Database
BASIC CATEGORY THEORY
Categories
Opposite category
oppchomf
Next ⟩
oppcid
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppchomf
Description:
Hom-sets of the opposite category.
(Contributed by
Mario Carneiro
, 17-Jan-2017)
Ref
Expression
Hypotheses
oppcbas.1
⊢
O
=
oppCat
⁡
C
oppchomf.h
⊢
H
=
Hom
𝑓
⁡
C
Assertion
oppchomf
⊢
tpos
H
=
Hom
𝑓
⁡
O
Proof
Step
Hyp
Ref
Expression
1
oppcbas.1
⊢
O
=
oppCat
⁡
C
2
oppchomf.h
⊢
H
=
Hom
𝑓
⁡
C
3
eqid
⊢
Hom
⁡
C
=
Hom
⁡
C
4
3
1
oppchom
⊢
y
Hom
⁡
O
x
=
x
Hom
⁡
C
y
5
4
a1i
⊢
y
∈
Base
C
∧
x
∈
Base
C
→
y
Hom
⁡
O
x
=
x
Hom
⁡
C
y
6
5
mpoeq3ia
⊢
y
∈
Base
C
,
x
∈
Base
C
⟼
y
Hom
⁡
O
x
=
y
∈
Base
C
,
x
∈
Base
C
⟼
x
Hom
⁡
C
y
7
eqid
⊢
Hom
𝑓
⁡
O
=
Hom
𝑓
⁡
O
8
eqid
⊢
Base
C
=
Base
C
9
1
8
oppcbas
⊢
Base
C
=
Base
O
10
eqid
⊢
Hom
⁡
O
=
Hom
⁡
O
11
7
9
10
homffval
⊢
Hom
𝑓
⁡
O
=
y
∈
Base
C
,
x
∈
Base
C
⟼
y
Hom
⁡
O
x
12
2
8
3
homffval
⊢
H
=
x
∈
Base
C
,
y
∈
Base
C
⟼
x
Hom
⁡
C
y
13
12
tposmpo
⊢
tpos
H
=
y
∈
Base
C
,
x
∈
Base
C
⟼
x
Hom
⁡
C
y
14
6
11
13
3eqtr4ri
⊢
tpos
H
=
Hom
𝑓
⁡
O