Metamath Proof Explorer


Theorem oppchomfpropd

Description: If two categories have the same hom-sets, so do their opposites. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Hypothesis oppchomfpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
Assertion oppchomfpropd φ Hom 𝑓 oppCat C = Hom 𝑓 oppCat D

Proof

Step Hyp Ref Expression
1 oppchomfpropd.1 φ Hom 𝑓 C = Hom 𝑓 D
2 1 tposeqd φ tpos Hom 𝑓 C = tpos Hom 𝑓 D
3 eqid oppCat C = oppCat C
4 eqid Hom 𝑓 C = Hom 𝑓 C
5 3 4 oppchomf tpos Hom 𝑓 C = Hom 𝑓 oppCat C
6 eqid oppCat D = oppCat D
7 eqid Hom 𝑓 D = Hom 𝑓 D
8 6 7 oppchomf tpos Hom 𝑓 D = Hom 𝑓 oppCat D
9 2 5 8 3eqtr3g φ Hom 𝑓 oppCat C = Hom 𝑓 oppCat D