Metamath Proof Explorer


Theorem oppchomfval

Description: Hom-sets of the opposite category. (Contributed by Mario Carneiro, 2-Jan-2017) (Proof shortened by AV, 14-Oct-2024)

Ref Expression
Hypotheses oppchom.h H = Hom C
oppchom.o O = oppCat C
Assertion oppchomfval tpos H = Hom O

Proof

Step Hyp Ref Expression
1 oppchom.h H = Hom C
2 oppchom.o O = oppCat C
3 homid Hom = Slot Hom ndx
4 slotsbhcdif Base ndx Hom ndx Base ndx comp ndx Hom ndx comp ndx
5 4 simp3i Hom ndx comp ndx
6 3 5 setsnid Hom C sSet Hom ndx tpos H = Hom C sSet Hom ndx tpos H sSet comp ndx u Base C × Base C , z Base C tpos z 2 nd u comp C 1 st u
7 1 fvexi H V
8 7 tposex tpos H V
9 3 setsid C V tpos H V tpos H = Hom C sSet Hom ndx tpos H
10 8 9 mpan2 C V tpos H = Hom C sSet Hom ndx tpos H
11 eqid Base C = Base C
12 eqid comp C = comp C
13 11 1 12 2 oppcval C V O = C sSet Hom ndx tpos H sSet comp ndx u Base C × Base C , z Base C tpos z 2 nd u comp C 1 st u
14 13 fveq2d C V Hom O = Hom C sSet Hom ndx tpos H sSet comp ndx u Base C × Base C , z Base C tpos z 2 nd u comp C 1 st u
15 6 10 14 3eqtr4a C V tpos H = Hom O
16 tpos0 tpos =
17 fvprc ¬ C V Hom C =
18 1 17 eqtrid ¬ C V H =
19 18 tposeqd ¬ C V tpos H = tpos
20 fvprc ¬ C V oppCat C =
21 2 20 eqtrid ¬ C V O =
22 21 fveq2d ¬ C V Hom O = Hom
23 3 str0 = Hom
24 22 23 eqtr4di ¬ C V Hom O =
25 16 19 24 3eqtr4a ¬ C V tpos H = Hom O
26 15 25 pm2.61i tpos H = Hom O