Metamath Proof Explorer


Theorem oppcmon

Description: A monomorphism in the opposite category is an epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcmon.o O = oppCat C
oppcmon.c φ C Cat
oppcmon.m M = Mono O
oppcmon.e E = Epi C
Assertion oppcmon φ X M Y = Y E X

Proof

Step Hyp Ref Expression
1 oppcmon.o O = oppCat C
2 oppcmon.c φ C Cat
3 oppcmon.m M = Mono O
4 oppcmon.e E = Epi C
5 fveq2 c = C oppCat c = oppCat C
6 5 1 syl6eqr c = C oppCat c = O
7 6 fveq2d c = C Mono oppCat c = Mono O
8 7 3 syl6eqr c = C Mono oppCat c = M
9 8 tposeqd c = C tpos Mono oppCat c = tpos M
10 df-epi Epi = c Cat tpos Mono oppCat c
11 3 fvexi M V
12 11 tposex tpos M V
13 9 10 12 fvmpt C Cat Epi C = tpos M
14 2 13 syl φ Epi C = tpos M
15 4 14 syl5eq φ E = tpos M
16 15 oveqd φ Y E X = Y tpos M X
17 ovtpos Y tpos M X = X M Y
18 16 17 syl6req φ X M Y = Y E X