Description: Commutativity rule for "opposite" Theorem 9.2 of Schwabhauser p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hpg.p | |
|
| hpg.d | |
||
| hpg.i | |
||
| hpg.o | |
||
| opphl.l | |
||
| opphl.d | |
||
| opphl.g | |
||
| oppcom.a | |
||
| oppcom.b | |
||
| oppcom.o | |
||
| Assertion | oppcom | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hpg.p | |
|
| 2 | hpg.d | |
|
| 3 | hpg.i | |
|
| 4 | hpg.o | |
|
| 5 | opphl.l | |
|
| 6 | opphl.d | |
|
| 7 | opphl.g | |
|
| 8 | oppcom.a | |
|
| 9 | oppcom.b | |
|
| 10 | oppcom.o | |
|
| 11 | 1 2 3 4 8 9 | islnopp | |
| 12 | 10 11 | mpbid | |
| 13 | 12 | simpld | |
| 14 | 13 | simprd | |
| 15 | 13 | simpld | |
| 16 | 12 | simprd | |
| 17 | 7 | ad2antrr | |
| 18 | 8 | ad2antrr | |
| 19 | 7 | adantr | |
| 20 | 6 | adantr | |
| 21 | simpr | |
|
| 22 | 1 5 3 19 20 21 | tglnpt | |
| 23 | 22 | adantr | |
| 24 | 9 | ad2antrr | |
| 25 | simpr | |
|
| 26 | 1 2 3 17 18 23 24 25 | tgbtwncom | |
| 27 | 7 | ad2antrr | |
| 28 | 9 | ad2antrr | |
| 29 | 22 | adantr | |
| 30 | 8 | ad2antrr | |
| 31 | simpr | |
|
| 32 | 1 2 3 27 28 29 30 31 | tgbtwncom | |
| 33 | 26 32 | impbida | |
| 34 | 33 | rexbidva | |
| 35 | 16 34 | mpbid | |
| 36 | 14 15 35 | jca31 | |
| 37 | 1 2 3 4 9 8 | islnopp | |
| 38 | 36 37 | mpbird | |