Metamath Proof Explorer


Theorem oppcom

Description: Commutativity rule for "opposite" Theorem 9.2 of Schwabhauser p. 67. (Contributed by Thierry Arnoux, 19-Dec-2019)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
oppcom.a φ A P
oppcom.b φ B P
oppcom.o φ A O B
Assertion oppcom φ B O A

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 oppcom.a φ A P
9 oppcom.b φ B P
10 oppcom.o φ A O B
11 1 2 3 4 8 9 islnopp φ A O B ¬ A D ¬ B D t D t A I B
12 10 11 mpbid φ ¬ A D ¬ B D t D t A I B
13 12 simpld φ ¬ A D ¬ B D
14 13 simprd φ ¬ B D
15 13 simpld φ ¬ A D
16 12 simprd φ t D t A I B
17 7 ad2antrr φ t D t A I B G 𝒢 Tarski
18 8 ad2antrr φ t D t A I B A P
19 7 adantr φ t D G 𝒢 Tarski
20 6 adantr φ t D D ran L
21 simpr φ t D t D
22 1 5 3 19 20 21 tglnpt φ t D t P
23 22 adantr φ t D t A I B t P
24 9 ad2antrr φ t D t A I B B P
25 simpr φ t D t A I B t A I B
26 1 2 3 17 18 23 24 25 tgbtwncom φ t D t A I B t B I A
27 7 ad2antrr φ t D t B I A G 𝒢 Tarski
28 9 ad2antrr φ t D t B I A B P
29 22 adantr φ t D t B I A t P
30 8 ad2antrr φ t D t B I A A P
31 simpr φ t D t B I A t B I A
32 1 2 3 27 28 29 30 31 tgbtwncom φ t D t B I A t A I B
33 26 32 impbida φ t D t A I B t B I A
34 33 rexbidva φ t D t A I B t D t B I A
35 16 34 mpbid φ t D t B I A
36 14 15 35 jca31 φ ¬ B D ¬ A D t D t B I A
37 1 2 3 4 9 8 islnopp φ B O A ¬ B D ¬ A D t D t B I A
38 36 37 mpbird φ B O A