Metamath Proof Explorer


Theorem oppcsect2

Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcsect.b B = Base C
oppcsect.o O = oppCat C
oppcsect.c φ C Cat
oppcsect.x φ X B
oppcsect.y φ Y B
oppcsect.s S = Sect C
oppcsect.t T = Sect O
Assertion oppcsect2 φ X T Y = X S Y -1

Proof

Step Hyp Ref Expression
1 oppcsect.b B = Base C
2 oppcsect.o O = oppCat C
3 oppcsect.c φ C Cat
4 oppcsect.x φ X B
5 oppcsect.y φ Y B
6 oppcsect.s S = Sect C
7 oppcsect.t T = Sect O
8 2 1 oppcbas B = Base O
9 eqid Hom O = Hom O
10 eqid comp O = comp O
11 eqid Id O = Id O
12 2 oppccat C Cat O Cat
13 3 12 syl φ O Cat
14 8 9 10 11 7 13 4 5 sectss φ X T Y X Hom O Y × Y Hom O X
15 relxp Rel X Hom O Y × Y Hom O X
16 relss X T Y X Hom O Y × Y Hom O X Rel X Hom O Y × Y Hom O X Rel X T Y
17 14 15 16 mpisyl φ Rel X T Y
18 relcnv Rel X S Y -1
19 18 a1i φ Rel X S Y -1
20 1 2 3 4 5 6 7 oppcsect φ f X T Y g g X S Y f
21 vex f V
22 vex g V
23 21 22 brcnv f X S Y -1 g g X S Y f
24 20 23 bitr4di φ f X T Y g f X S Y -1 g
25 17 19 24 eqbrrdv φ X T Y = X S Y -1