Metamath Proof Explorer


Theorem oppcthin

Description: The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Hypothesis oppcthin.o O = oppCat C
Assertion oppcthin C ThinCat O ThinCat

Proof

Step Hyp Ref Expression
1 oppcthin.o O = oppCat C
2 eqid Base C = Base C
3 1 2 oppcbas Base C = Base O
4 3 a1i C ThinCat Base C = Base O
5 eqidd C ThinCat Hom O = Hom O
6 simpl C ThinCat x Base C y Base C C ThinCat
7 simprr C ThinCat x Base C y Base C y Base C
8 simprl C ThinCat x Base C y Base C x Base C
9 eqid Hom C = Hom C
10 6 7 8 2 9 thincmo C ThinCat x Base C y Base C * f f y Hom C x
11 9 1 oppchom x Hom O y = y Hom C x
12 11 eleq2i f x Hom O y f y Hom C x
13 12 mobii * f f x Hom O y * f f y Hom C x
14 10 13 sylibr C ThinCat x Base C y Base C * f f x Hom O y
15 thincc C ThinCat C Cat
16 1 oppccat C Cat O Cat
17 15 16 syl C ThinCat O Cat
18 4 5 14 17 isthincd C ThinCat O ThinCat