Metamath Proof Explorer


Theorem oppcthin

Description: The opposite category of a thin category is thin. (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Hypothesis oppcthin.o O = oppCat C
Assertion oppcthin Could not format assertion : No typesetting found for |- ( C e. ThinCat -> O e. ThinCat ) with typecode |-

Proof

Step Hyp Ref Expression
1 oppcthin.o O = oppCat C
2 eqid Base C = Base C
3 1 2 oppcbas Base C = Base O
4 3 a1i Could not format ( C e. ThinCat -> ( Base ` C ) = ( Base ` O ) ) : No typesetting found for |- ( C e. ThinCat -> ( Base ` C ) = ( Base ` O ) ) with typecode |-
5 eqidd Could not format ( C e. ThinCat -> ( Hom ` O ) = ( Hom ` O ) ) : No typesetting found for |- ( C e. ThinCat -> ( Hom ` O ) = ( Hom ` O ) ) with typecode |-
6 simpl Could not format ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) : No typesetting found for |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> C e. ThinCat ) with typecode |-
7 simprr Could not format ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) : No typesetting found for |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) with typecode |-
8 simprl Could not format ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) : No typesetting found for |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) with typecode |-
9 eqid Hom C = Hom C
10 6 7 8 2 9 thincmo Could not format ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( y ( Hom ` C ) x ) ) : No typesetting found for |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( y ( Hom ` C ) x ) ) with typecode |-
11 9 1 oppchom x Hom O y = y Hom C x
12 11 eleq2i f x Hom O y f y Hom C x
13 12 mobii * f f x Hom O y * f f y Hom C x
14 10 13 sylibr Could not format ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( x ( Hom ` O ) y ) ) : No typesetting found for |- ( ( C e. ThinCat /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> E* f f e. ( x ( Hom ` O ) y ) ) with typecode |-
15 thincc Could not format ( C e. ThinCat -> C e. Cat ) : No typesetting found for |- ( C e. ThinCat -> C e. Cat ) with typecode |-
16 1 oppccat C Cat O Cat
17 15 16 syl Could not format ( C e. ThinCat -> O e. Cat ) : No typesetting found for |- ( C e. ThinCat -> O e. Cat ) with typecode |-
18 4 5 14 17 isthincd Could not format ( C e. ThinCat -> O e. ThinCat ) : No typesetting found for |- ( C e. ThinCat -> O e. ThinCat ) with typecode |-