Metamath Proof Explorer


Theorem oppfval

Description: Value of the opposite functor. (Contributed by Zhi Wang, 4-Nov-2025)

Ref Expression
Assertion oppfval Could not format assertion : No typesetting found for |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) with typecode |-

Proof

Step Hyp Ref Expression
1 relfunc Rel C Func D
2 1 brrelex12i F C Func D G F V G V
3 oppfvalg Could not format ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) : No typesetting found for |- ( ( F e. _V /\ G e. _V ) -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) with typecode |-
4 2 3 syl Could not format ( F ( C Func D ) G -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) : No typesetting found for |- ( F ( C Func D ) G -> ( F oppFunc G ) = if ( ( Rel G /\ Rel dom G ) , <. F , tpos G >. , (/) ) ) with typecode |-
5 oppfvallem F C Func D G Rel G Rel dom G
6 5 iftrued F C Func D G if Rel G Rel dom G F tpos G = F tpos G
7 4 6 eqtrd Could not format ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) : No typesetting found for |- ( F ( C Func D ) G -> ( F oppFunc G ) = <. F , tpos G >. ) with typecode |-