Metamath Proof Explorer


Theorem oppgcntr

Description: The center of a group is the same as the center of the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses oppggic.o O = opp 𝑔 G
oppgcntr.z Z = Cntr G
Assertion oppgcntr Z = Cntr O

Proof

Step Hyp Ref Expression
1 oppggic.o O = opp 𝑔 G
2 oppgcntr.z Z = Cntr G
3 eqid Cntz G = Cntz G
4 1 3 oppgcntz Cntz G Base G = Cntz O Base G
5 eqid Base G = Base G
6 5 3 cntrval Cntz G Base G = Cntr G
7 6 2 eqtr4i Cntz G Base G = Z
8 1 5 oppgbas Base G = Base O
9 eqid Cntz O = Cntz O
10 8 9 cntrval Cntz O Base G = Cntr O
11 4 7 10 3eqtr3i Z = Cntr O