Metamath Proof Explorer


Theorem oppgcntz

Description: A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses oppggic.o O = opp 𝑔 G
oppgcntz.z Z = Cntz G
Assertion oppgcntz Z A = Cntz O A

Proof

Step Hyp Ref Expression
1 oppggic.o O = opp 𝑔 G
2 oppgcntz.z Z = Cntz G
3 eqcom x + G y = y + G x y + G x = x + G y
4 eqid + G = + G
5 eqid + O = + O
6 4 1 5 oppgplus x + O y = y + G x
7 4 1 5 oppgplus y + O x = x + G y
8 6 7 eqeq12i x + O y = y + O x y + G x = x + G y
9 3 8 bitr4i x + G y = y + G x x + O y = y + O x
10 9 ralbii y A x + G y = y + G x y A x + O y = y + O x
11 10 anbi2i x Base G y A x + G y = y + G x x Base G y A x + O y = y + O x
12 11 anbi2i A Base G x Base G y A x + G y = y + G x A Base G x Base G y A x + O y = y + O x
13 eqid Base G = Base G
14 13 2 cntzrcl x Z A G V A Base G
15 14 simprd x Z A A Base G
16 13 4 2 elcntz A Base G x Z A x Base G y A x + G y = y + G x
17 15 16 biadanii x Z A A Base G x Base G y A x + G y = y + G x
18 1 13 oppgbas Base G = Base O
19 eqid Cntz O = Cntz O
20 18 19 cntzrcl x Cntz O A O V A Base G
21 20 simprd x Cntz O A A Base G
22 18 5 19 elcntz A Base G x Cntz O A x Base G y A x + O y = y + O x
23 21 22 biadanii x Cntz O A A Base G x Base G y A x + O y = y + O x
24 12 17 23 3bitr4i x Z A x Cntz O A
25 24 eqriv Z A = Cntz O A