Metamath Proof Explorer


Theorem oppggic

Description: Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypothesis oppggic.o O = opp 𝑔 G
Assertion oppggic G Grp G 𝑔 O

Proof

Step Hyp Ref Expression
1 oppggic.o O = opp 𝑔 G
2 eqid inv g G = inv g G
3 1 2 invoppggim G Grp inv g G G GrpIso O
4 brgici inv g G G GrpIso O G 𝑔 O
5 3 4 syl G Grp G 𝑔 O