Metamath Proof Explorer


Theorem oppggrpb

Description: Bidirectional form of oppggrp . (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypothesis oppgbas.1 O = opp 𝑔 R
Assertion oppggrpb R Grp O Grp

Proof

Step Hyp Ref Expression
1 oppgbas.1 O = opp 𝑔 R
2 1 oppggrp R Grp O Grp
3 eqid opp 𝑔 O = opp 𝑔 O
4 3 oppggrp O Grp opp 𝑔 O Grp
5 eqid Base R = Base R
6 1 5 oppgbas Base R = Base O
7 3 6 oppgbas Base R = Base opp 𝑔 O
8 7 a1i Base R = Base opp 𝑔 O
9 eqidd Base R = Base R
10 eqid + O = + O
11 eqid + opp 𝑔 O = + opp 𝑔 O
12 10 3 11 oppgplus x + opp 𝑔 O y = y + O x
13 eqid + R = + R
14 13 1 10 oppgplus y + O x = x + R y
15 12 14 eqtri x + opp 𝑔 O y = x + R y
16 15 a1i x Base R y Base R x + opp 𝑔 O y = x + R y
17 8 9 16 grppropd opp 𝑔 O Grp R Grp
18 17 mptru opp 𝑔 O Grp R Grp
19 4 18 sylib O Grp R Grp
20 2 19 impbii R Grp O Grp