Metamath Proof Explorer


Theorem oppgid

Description: Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015)

Ref Expression
Hypotheses oppgbas.1 O = opp 𝑔 R
oppgid.2 0 ˙ = 0 R
Assertion oppgid 0 ˙ = 0 O

Proof

Step Hyp Ref Expression
1 oppgbas.1 O = opp 𝑔 R
2 oppgid.2 0 ˙ = 0 R
3 ancom x + R y = y y + R x = y y + R x = y x + R y = y
4 eqid + R = + R
5 eqid + O = + O
6 4 1 5 oppgplus x + O y = y + R x
7 6 eqeq1i x + O y = y y + R x = y
8 4 1 5 oppgplus y + O x = x + R y
9 8 eqeq1i y + O x = y x + R y = y
10 7 9 anbi12i x + O y = y y + O x = y y + R x = y x + R y = y
11 3 10 bitr4i x + R y = y y + R x = y x + O y = y y + O x = y
12 11 ralbii y Base R x + R y = y y + R x = y y Base R x + O y = y y + O x = y
13 12 anbi2i x Base R y Base R x + R y = y y + R x = y x Base R y Base R x + O y = y y + O x = y
14 13 iotabii ι x | x Base R y Base R x + R y = y y + R x = y = ι x | x Base R y Base R x + O y = y y + O x = y
15 eqid Base R = Base R
16 15 4 2 grpidval 0 ˙ = ι x | x Base R y Base R x + R y = y y + R x = y
17 1 15 oppgbas Base R = Base O
18 eqid 0 O = 0 O
19 17 5 18 grpidval 0 O = ι x | x Base R y Base R x + O y = y y + O x = y
20 14 16 19 3eqtr4i 0 ˙ = 0 O