Metamath Proof Explorer


Theorem oppginv

Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Hypotheses oppgbas.1 O=opp𝑔R
oppginv.2 I=invgR
Assertion oppginv RGrpI=invgO

Proof

Step Hyp Ref Expression
1 oppgbas.1 O=opp𝑔R
2 oppginv.2 I=invgR
3 eqid BaseR=BaseR
4 3 2 grpinvf RGrpI:BaseRBaseR
5 eqid +R=+R
6 eqid +O=+O
7 5 1 6 oppgplus Ix+Ox=x+RIx
8 eqid 0R=0R
9 3 5 8 2 grprinv RGrpxBaseRx+RIx=0R
10 7 9 eqtrid RGrpxBaseRIx+Ox=0R
11 10 ralrimiva RGrpxBaseRIx+Ox=0R
12 1 oppggrp RGrpOGrp
13 1 3 oppgbas BaseR=BaseO
14 1 8 oppgid 0R=0O
15 eqid invgO=invgO
16 13 6 14 15 isgrpinv OGrpI:BaseRBaseRxBaseRIx+Ox=0RinvgO=I
17 12 16 syl RGrpI:BaseRBaseRxBaseRIx+Ox=0RinvgO=I
18 4 11 17 mpbi2and RGrpinvgO=I
19 18 eqcomd RGrpI=invgO