Description: Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppgbas.1 | |
|
oppginv.2 | |
||
Assertion | oppginv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | |
|
2 | oppginv.2 | |
|
3 | eqid | |
|
4 | 3 2 | grpinvf | |
5 | eqid | |
|
6 | eqid | |
|
7 | 5 1 6 | oppgplus | |
8 | eqid | |
|
9 | 3 5 8 2 | grprinv | |
10 | 7 9 | eqtrid | |
11 | 10 | ralrimiva | |
12 | 1 | oppggrp | |
13 | 1 3 | oppgbas | |
14 | 1 8 | oppgid | |
15 | eqid | |
|
16 | 13 6 14 15 | isgrpinv | |
17 | 12 16 | syl | |
18 | 4 11 17 | mpbi2and | |
19 | 18 | eqcomd | |