Database
BASIC ALGEBRAIC STRUCTURES
Groups
The opposite group
oppglem
Next ⟩
oppgbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppglem
Description:
Lemma for
oppgbas
.
(Contributed by
Stefan O'Rear
, 26-Aug-2015)
Ref
Expression
Hypotheses
oppgbas.1
⊢
O
=
opp
𝑔
⁡
R
oppglem.2
⊢
E
=
Slot
N
oppglem.3
⊢
N
∈
ℕ
oppglem.4
⊢
N
≠
2
Assertion
oppglem
⊢
E
⁡
R
=
E
⁡
O
Proof
Step
Hyp
Ref
Expression
1
oppgbas.1
⊢
O
=
opp
𝑔
⁡
R
2
oppglem.2
⊢
E
=
Slot
N
3
oppglem.3
⊢
N
∈
ℕ
4
oppglem.4
⊢
N
≠
2
5
2
3
ndxid
⊢
E
=
Slot
E
⁡
ndx
6
2
3
ndxarg
⊢
E
⁡
ndx
=
N
7
plusgndx
⊢
+
ndx
=
2
8
6
7
neeq12i
⊢
E
⁡
ndx
≠
+
ndx
↔
N
≠
2
9
4
8
mpbir
⊢
E
⁡
ndx
≠
+
ndx
10
5
9
setsnid
⊢
E
⁡
R
=
E
⁡
R
sSet
+
ndx
tpos
+
R
11
eqid
⊢
+
R
=
+
R
12
11
1
oppgval
⊢
O
=
R
sSet
+
ndx
tpos
+
R
13
12
fveq2i
⊢
E
⁡
O
=
E
⁡
R
sSet
+
ndx
tpos
+
R
14
10
13
eqtr4i
⊢
E
⁡
R
=
E
⁡
O