Metamath Proof Explorer


Theorem oppglsm

Description: The subspace sum operation in the opposite group. (Contributed by Mario Carneiro, 19-Apr-2016) (Proof shortened by AV, 2-Mar-2024)

Ref Expression
Hypotheses oppglsm.o O = opp 𝑔 G
oppglsm.p ˙ = LSSum G
Assertion oppglsm T LSSum O U = U ˙ T

Proof

Step Hyp Ref Expression
1 oppglsm.o O = opp 𝑔 G
2 oppglsm.p ˙ = LSSum G
3 1 fvexi O V
4 eqid Base G = Base G
5 1 4 oppgbas Base G = Base O
6 eqid + O = + O
7 eqid LSSum O = LSSum O
8 5 6 7 lsmfval O V LSSum O = t 𝒫 Base G , u 𝒫 Base G ran x t , y u x + O y
9 3 8 ax-mp LSSum O = t 𝒫 Base G , u 𝒫 Base G ran x t , y u x + O y
10 eqid + G = + G
11 4 10 2 lsmfval G V ˙ = u 𝒫 Base G , t 𝒫 Base G ran y u , x t y + G x
12 11 tposeqd G V tpos ˙ = tpos u 𝒫 Base G , t 𝒫 Base G ran y u , x t y + G x
13 eqid y u , x t y + G x = y u , x t y + G x
14 13 reldmmpo Rel dom y u , x t y + G x
15 13 mpofun Fun y u , x t y + G x
16 funforn Fun y u , x t y + G x y u , x t y + G x : dom y u , x t y + G x onto ran y u , x t y + G x
17 15 16 mpbi y u , x t y + G x : dom y u , x t y + G x onto ran y u , x t y + G x
18 tposfo2 Rel dom y u , x t y + G x y u , x t y + G x : dom y u , x t y + G x onto ran y u , x t y + G x tpos y u , x t y + G x : dom y u , x t y + G x -1 onto ran y u , x t y + G x
19 14 17 18 mp2 tpos y u , x t y + G x : dom y u , x t y + G x -1 onto ran y u , x t y + G x
20 forn tpos y u , x t y + G x : dom y u , x t y + G x -1 onto ran y u , x t y + G x ran tpos y u , x t y + G x = ran y u , x t y + G x
21 19 20 ax-mp ran tpos y u , x t y + G x = ran y u , x t y + G x
22 10 1 6 oppgplus x + O y = y + G x
23 22 eqcomi y + G x = x + O y
24 23 a1i y u x t y + G x = x + O y
25 24 mpoeq3ia y u , x t y + G x = y u , x t x + O y
26 25 tposmpo tpos y u , x t y + G x = x t , y u x + O y
27 26 rneqi ran tpos y u , x t y + G x = ran x t , y u x + O y
28 21 27 eqtr3i ran y u , x t y + G x = ran x t , y u x + O y
29 28 a1i u 𝒫 Base G t 𝒫 Base G ran y u , x t y + G x = ran x t , y u x + O y
30 29 mpoeq3ia u 𝒫 Base G , t 𝒫 Base G ran y u , x t y + G x = u 𝒫 Base G , t 𝒫 Base G ran x t , y u x + O y
31 30 tposmpo tpos u 𝒫 Base G , t 𝒫 Base G ran y u , x t y + G x = t 𝒫 Base G , u 𝒫 Base G ran x t , y u x + O y
32 12 31 eqtrdi G V tpos ˙ = t 𝒫 Base G , u 𝒫 Base G ran x t , y u x + O y
33 9 32 eqtr4id G V LSSum O = tpos ˙
34 33 oveqd G V T LSSum O U = T tpos ˙ U
35 ovtpos T tpos ˙ U = U ˙ T
36 34 35 eqtrdi G V T LSSum O U = U ˙ T
37 eqid t 𝒫 Base G , u 𝒫 Base G = t 𝒫 Base G , u 𝒫 Base G
38 0ex V
39 eqidd t = T u = U =
40 37 38 39 elovmpo x T t 𝒫 Base G , u 𝒫 Base G U T 𝒫 Base G U 𝒫 Base G x
41 40 simp3bi x T t 𝒫 Base G , u 𝒫 Base G U x
42 41 ssriv T t 𝒫 Base G , u 𝒫 Base G U
43 ss0 T t 𝒫 Base G , u 𝒫 Base G U T t 𝒫 Base G , u 𝒫 Base G U =
44 42 43 ax-mp T t 𝒫 Base G , u 𝒫 Base G U =
45 elpwi t 𝒫 Base G t Base G
46 45 3ad2ant2 ¬ G V t 𝒫 Base G u 𝒫 Base G t Base G
47 fvprc ¬ G V Base G =
48 47 3ad2ant1 ¬ G V t 𝒫 Base G u 𝒫 Base G Base G =
49 46 48 sseqtrd ¬ G V t 𝒫 Base G u 𝒫 Base G t
50 ss0 t t =
51 49 50 syl ¬ G V t 𝒫 Base G u 𝒫 Base G t =
52 51 orcd ¬ G V t 𝒫 Base G u 𝒫 Base G t = u =
53 0mpo0 t = u = x t , y u x + O y =
54 52 53 syl ¬ G V t 𝒫 Base G u 𝒫 Base G x t , y u x + O y =
55 54 rneqd ¬ G V t 𝒫 Base G u 𝒫 Base G ran x t , y u x + O y = ran
56 rn0 ran =
57 55 56 eqtrdi ¬ G V t 𝒫 Base G u 𝒫 Base G ran x t , y u x + O y =
58 57 mpoeq3dva ¬ G V t 𝒫 Base G , u 𝒫 Base G ran x t , y u x + O y = t 𝒫 Base G , u 𝒫 Base G
59 9 58 syl5eq ¬ G V LSSum O = t 𝒫 Base G , u 𝒫 Base G
60 59 oveqd ¬ G V T LSSum O U = T t 𝒫 Base G , u 𝒫 Base G U
61 fvprc ¬ G V LSSum G =
62 2 61 syl5eq ¬ G V ˙ =
63 62 oveqd ¬ G V U ˙ T = U T
64 0ov U T =
65 63 64 eqtrdi ¬ G V U ˙ T =
66 44 60 65 3eqtr4a ¬ G V T LSSum O U = U ˙ T
67 36 66 pm2.61i T LSSum O U = U ˙ T