Metamath Proof Explorer


Theorem oppgsubm

Description: Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppggic.o O = opp 𝑔 G
Assertion oppgsubm SubMnd G = SubMnd O

Proof

Step Hyp Ref Expression
1 oppggic.o O = opp 𝑔 G
2 submrcl x SubMnd G G Mnd
3 submrcl x SubMnd O O Mnd
4 1 oppgmndb G Mnd O Mnd
5 3 4 sylibr x SubMnd O G Mnd
6 ralcom y x z x y + G z x z x y x y + G z x
7 eqid + G = + G
8 eqid + O = + O
9 7 1 8 oppgplus z + O y = y + G z
10 9 eleq1i z + O y x y + G z x
11 10 2ralbii z x y x z + O y x z x y x y + G z x
12 6 11 bitr4i y x z x y + G z x z x y x z + O y x
13 12 3anbi3i x Base G 0 G x y x z x y + G z x x Base G 0 G x z x y x z + O y x
14 13 a1i G Mnd x Base G 0 G x y x z x y + G z x x Base G 0 G x z x y x z + O y x
15 eqid Base G = Base G
16 eqid 0 G = 0 G
17 15 16 7 issubm G Mnd x SubMnd G x Base G 0 G x y x z x y + G z x
18 1 15 oppgbas Base G = Base O
19 1 16 oppgid 0 G = 0 O
20 18 19 8 issubm O Mnd x SubMnd O x Base G 0 G x z x y x z + O y x
21 4 20 sylbi G Mnd x SubMnd O x Base G 0 G x z x y x z + O y x
22 14 17 21 3bitr4d G Mnd x SubMnd G x SubMnd O
23 2 5 22 pm5.21nii x SubMnd G x SubMnd O
24 23 eqriv SubMnd G = SubMnd O