Metamath Proof Explorer


Theorem oppgtgp

Description: The opposite of a topological group is a topological group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypothesis oppgtmd.1 O = opp 𝑔 G
Assertion oppgtgp G TopGrp O TopGrp

Proof

Step Hyp Ref Expression
1 oppgtmd.1 O = opp 𝑔 G
2 tgpgrp G TopGrp G Grp
3 1 oppggrp G Grp O Grp
4 2 3 syl G TopGrp O Grp
5 tgptmd G TopGrp G TopMnd
6 1 oppgtmd G TopMnd O TopMnd
7 5 6 syl G TopGrp O TopMnd
8 eqid inv g G = inv g G
9 1 8 oppginv G Grp inv g G = inv g O
10 2 9 syl G TopGrp inv g G = inv g O
11 eqid TopOpen G = TopOpen G
12 11 8 tgpinv G TopGrp inv g G TopOpen G Cn TopOpen G
13 10 12 eqeltrrd G TopGrp inv g O TopOpen G Cn TopOpen G
14 1 11 oppgtopn TopOpen G = TopOpen O
15 eqid inv g O = inv g O
16 14 15 istgp O TopGrp O Grp O TopMnd inv g O TopOpen G Cn TopOpen G
17 4 7 13 16 syl3anbrc G TopGrp O TopGrp