Metamath Proof Explorer


Theorem oppgtmd

Description: The opposite of a topological monoid is a topological monoid. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypothesis oppgtmd.1 O = opp 𝑔 G
Assertion oppgtmd G TopMnd O TopMnd

Proof

Step Hyp Ref Expression
1 oppgtmd.1 O = opp 𝑔 G
2 tmdmnd G TopMnd G Mnd
3 1 oppgmnd G Mnd O Mnd
4 2 3 syl G TopMnd O Mnd
5 eqid TopOpen G = TopOpen G
6 eqid Base G = Base G
7 5 6 tmdtopon G TopMnd TopOpen G TopOn Base G
8 1 6 oppgbas Base G = Base O
9 1 5 oppgtopn TopOpen G = TopOpen O
10 8 9 istps O TopSp TopOpen G TopOn Base G
11 7 10 sylibr G TopMnd O TopSp
12 eqid + G = + G
13 id G TopMnd G TopMnd
14 7 7 cnmpt2nd G TopMnd x Base G , y Base G y TopOpen G × t TopOpen G Cn TopOpen G
15 7 7 cnmpt1st G TopMnd x Base G , y Base G x TopOpen G × t TopOpen G Cn TopOpen G
16 5 12 13 7 7 14 15 cnmpt2plusg G TopMnd x Base G , y Base G y + G x TopOpen G × t TopOpen G Cn TopOpen G
17 eqid + O = + O
18 eqid + 𝑓 O = + 𝑓 O
19 8 17 18 plusffval + 𝑓 O = x Base G , y Base G x + O y
20 12 1 17 oppgplus x + O y = y + G x
21 6 6 20 mpoeq123i x Base G , y Base G x + O y = x Base G , y Base G y + G x
22 19 21 eqtr2i x Base G , y Base G y + G x = + 𝑓 O
23 22 9 istmd O TopMnd O Mnd O TopSp x Base G , y Base G y + G x TopOpen G × t TopOpen G Cn TopOpen G
24 4 11 16 23 syl3anbrc G TopMnd O TopMnd