Metamath Proof Explorer


Theorem oppgtopn

Description: Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015)

Ref Expression
Hypotheses oppgbas.1 O = opp 𝑔 R
oppgtopn.2 J = TopOpen R
Assertion oppgtopn J = TopOpen O

Proof

Step Hyp Ref Expression
1 oppgbas.1 O = opp 𝑔 R
2 oppgtopn.2 J = TopOpen R
3 eqid Base R = Base R
4 eqid TopSet R = TopSet R
5 3 4 topnval TopSet R 𝑡 Base R = TopOpen R
6 1 3 oppgbas Base R = Base O
7 1 4 oppgtset TopSet R = TopSet O
8 6 7 topnval TopSet R 𝑡 Base R = TopOpen O
9 2 5 8 3eqtr2i J = TopOpen O