Database
BASIC ALGEBRAIC STRUCTURES
Groups
The opposite group
oppgtopn
Next ⟩
oppgmnd
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppgtopn
Description:
Topology of an opposite group.
(Contributed by
Mario Carneiro
, 17-Sep-2015)
Ref
Expression
Hypotheses
oppgbas.1
⊢
O
=
opp
𝑔
⁡
R
oppgtopn.2
⊢
J
=
TopOpen
⁡
R
Assertion
oppgtopn
⊢
J
=
TopOpen
⁡
O
Proof
Step
Hyp
Ref
Expression
1
oppgbas.1
⊢
O
=
opp
𝑔
⁡
R
2
oppgtopn.2
⊢
J
=
TopOpen
⁡
R
3
eqid
⊢
Base
R
=
Base
R
4
eqid
⊢
TopSet
⁡
R
=
TopSet
⁡
R
5
3
4
topnval
⊢
TopSet
⁡
R
↾
𝑡
Base
R
=
TopOpen
⁡
R
6
1
3
oppgbas
⊢
Base
R
=
Base
O
7
1
4
oppgtset
⊢
TopSet
⁡
R
=
TopSet
⁡
O
8
6
7
topnval
⊢
TopSet
⁡
R
↾
𝑡
Base
R
=
TopOpen
⁡
O
9
2
5
8
3eqtr2i
⊢
J
=
TopOpen
⁡
O