Metamath Proof Explorer


Theorem oppgval

Description: Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015) (Revised by Mario Carneiro, 16-Sep-2015) (Revised by Fan Zheng, 26-Jun-2016)

Ref Expression
Hypotheses oppgval.2 + ˙ = + R
oppgval.3 O = opp 𝑔 R
Assertion oppgval O = R sSet + ndx tpos + ˙

Proof

Step Hyp Ref Expression
1 oppgval.2 + ˙ = + R
2 oppgval.3 O = opp 𝑔 R
3 id x = R x = R
4 fveq2 x = R + x = + R
5 4 1 eqtr4di x = R + x = + ˙
6 5 tposeqd x = R tpos + x = tpos + ˙
7 6 opeq2d x = R + ndx tpos + x = + ndx tpos + ˙
8 3 7 oveq12d x = R x sSet + ndx tpos + x = R sSet + ndx tpos + ˙
9 df-oppg opp 𝑔 = x V x sSet + ndx tpos + x
10 ovex R sSet + ndx tpos + ˙ V
11 8 9 10 fvmpt R V opp 𝑔 R = R sSet + ndx tpos + ˙
12 fvprc ¬ R V opp 𝑔 R =
13 reldmsets Rel dom sSet
14 13 ovprc1 ¬ R V R sSet + ndx tpos + ˙ =
15 12 14 eqtr4d ¬ R V opp 𝑔 R = R sSet + ndx tpos + ˙
16 11 15 pm2.61i opp 𝑔 R = R sSet + ndx tpos + ˙
17 2 16 eqtri O = R sSet + ndx tpos + ˙