Metamath Proof Explorer


Theorem opphllem1

Description: Lemma for opphl . (Contributed by Thierry Arnoux, 20-Dec-2019)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
opphllem1.s S = pInv 𝒢 G M
opphllem1.a φ A P
opphllem1.b φ B P
opphllem1.c φ C P
opphllem1.r φ R D
opphllem1.o φ A O C
opphllem1.m φ M D
opphllem1.n φ A = S C
opphllem1.x φ A R
opphllem1.y φ B R
opphllem1.z φ B R I A
Assertion opphllem1 φ B O C

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 opphllem1.s S = pInv 𝒢 G M
9 opphllem1.a φ A P
10 opphllem1.b φ B P
11 opphllem1.c φ C P
12 opphllem1.r φ R D
13 opphllem1.o φ A O C
14 opphllem1.m φ M D
15 opphllem1.n φ A = S C
16 opphllem1.x φ A R
17 opphllem1.y φ B R
18 opphllem1.z φ B R I A
19 1 2 3 4 5 6 7 9 11 13 oppne1 φ ¬ A D
20 simpr φ B D A = B A = B
21 simplr φ B D A = B B D
22 20 21 eqeltrd φ B D A = B A D
23 7 ad2antrr φ B D A B G 𝒢 Tarski
24 10 ad2antrr φ B D A B B P
25 1 5 3 7 6 12 tglnpt φ R P
26 25 ad2antrr φ B D A B R P
27 9 ad2antrr φ B D A B A P
28 17 ad2antrr φ B D A B B R
29 28 necomd φ B D A B R B
30 18 ad2antrr φ B D A B B R I A
31 1 3 5 23 26 24 27 29 30 btwnlng3 φ B D A B A R L B
32 1 3 5 23 24 26 27 28 31 lncom φ B D A B A B L R
33 6 ad2antrr φ B D A B D ran L
34 simplr φ B D A B B D
35 12 ad2antrr φ B D A B R D
36 1 3 5 23 24 26 28 28 33 34 35 tglinethru φ B D A B D = B L R
37 32 36 eleqtrrd φ B D A B A D
38 22 37 pm2.61dane φ B D A D
39 19 38 mtand φ ¬ B D
40 1 2 3 4 5 6 7 9 11 13 oppne2 φ ¬ C D
41 1 5 3 7 6 14 tglnpt φ M P
42 eqid pInv 𝒢 G = pInv 𝒢 G
43 1 2 3 5 42 7 41 8 9 mirbtwn φ M S A I A
44 15 eqcomd φ S C = A
45 1 2 3 5 42 7 41 8 11 44 mircom φ S A = C
46 45 oveq1d φ S A I A = C I A
47 43 46 eleqtrd φ M C I A
48 1 2 3 7 25 11 9 10 41 18 47 axtgpasch φ t P t B I C t M I R
49 7 ad2antrr φ t P t B I C t M I R M = R G 𝒢 Tarski
50 25 ad2antrr φ t P t B I C t M I R M = R R P
51 simplrl φ t P t B I C t M I R M = R t P
52 simplrr φ t P t B I C t M I R M = R t B I C t M I R
53 52 simprd φ t P t B I C t M I R M = R t M I R
54 simpr φ t P t B I C t M I R M = R M = R
55 54 oveq1d φ t P t B I C t M I R M = R M I R = R I R
56 53 55 eleqtrd φ t P t B I C t M I R M = R t R I R
57 1 2 3 49 50 51 56 axtgbtwnid φ t P t B I C t M I R M = R R = t
58 12 ad2antrr φ t P t B I C t M I R M = R R D
59 57 58 eqeltrrd φ t P t B I C t M I R M = R t D
60 7 ad2antrr φ t P t B I C t M I R M R G 𝒢 Tarski
61 41 ad2antrr φ t P t B I C t M I R M R M P
62 25 ad2antrr φ t P t B I C t M I R M R R P
63 simplrl φ t P t B I C t M I R M R t P
64 simpr φ t P t B I C t M I R M R M R
65 simplrr φ t P t B I C t M I R M R t B I C t M I R
66 65 simprd φ t P t B I C t M I R M R t M I R
67 1 3 5 60 61 62 63 64 66 btwnlng1 φ t P t B I C t M I R M R t M L R
68 7 adantr φ M R G 𝒢 Tarski
69 41 adantr φ M R M P
70 25 adantr φ M R R P
71 simpr φ M R M R
72 6 adantr φ M R D ran L
73 14 adantr φ M R M D
74 12 adantr φ M R R D
75 1 3 5 68 69 70 71 71 72 73 74 tglinethru φ M R D = M L R
76 75 adantlr φ t P t B I C t M I R M R D = M L R
77 67 76 eleqtrrd φ t P t B I C t M I R M R t D
78 59 77 pm2.61dane φ t P t B I C t M I R t D
79 simprrl φ t P t B I C t M I R t B I C
80 48 78 79 reximssdv φ t D t B I C
81 39 40 80 jca31 φ ¬ B D ¬ C D t D t B I C
82 1 2 3 4 10 11 islnopp φ B O C ¬ B D ¬ C D t D t B I C
83 81 82 mpbird φ B O C