Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|
2 |
|
hpg.d |
|
3 |
|
hpg.i |
|
4 |
|
hpg.o |
|
5 |
|
opphl.l |
|
6 |
|
opphl.d |
|
7 |
|
opphl.g |
|
8 |
|
opphllem1.s |
|
9 |
|
opphllem1.a |
|
10 |
|
opphllem1.b |
|
11 |
|
opphllem1.c |
|
12 |
|
opphllem1.r |
|
13 |
|
opphllem1.o |
|
14 |
|
opphllem1.m |
|
15 |
|
opphllem1.n |
|
16 |
|
opphllem1.x |
|
17 |
|
opphllem1.y |
|
18 |
|
opphllem2.z |
|
19 |
6
|
adantr |
|
20 |
7
|
adantr |
|
21 |
11
|
adantr |
|
22 |
10
|
adantr |
|
23 |
|
eqid |
|
24 |
1 5 3 7 6 14
|
tglnpt |
|
25 |
24
|
adantr |
|
26 |
1 2 3 5 23 20 25 8 22
|
mircl |
|
27 |
14
|
adantr |
|
28 |
12
|
adantr |
|
29 |
1 2 3 5 23 20 8 19 27 28
|
mirln |
|
30 |
|
simpr |
|
31 |
|
simplr |
|
32 |
30 31
|
eqeltrd |
|
33 |
7
|
ad3antrrr |
|
34 |
10
|
ad3antrrr |
|
35 |
1 5 3 7 6 12
|
tglnpt |
|
36 |
35
|
ad3antrrr |
|
37 |
9
|
ad3antrrr |
|
38 |
17
|
ad3antrrr |
|
39 |
38
|
necomd |
|
40 |
|
simpllr |
|
41 |
1 3 5 33 36 34 37 39 40
|
btwnlng1 |
|
42 |
1 3 5 33 34 36 37 38 41
|
lncom |
|
43 |
6
|
ad3antrrr |
|
44 |
|
simplr |
|
45 |
12
|
ad3antrrr |
|
46 |
1 3 5 33 34 36 38 38 43 44 45
|
tglinethru |
|
47 |
42 46
|
eleqtrrd |
|
48 |
32 47
|
pm2.61dane |
|
49 |
1 2 3 4 5 6 7 9 11 13
|
oppne1 |
|
50 |
49
|
ad2antrr |
|
51 |
48 50
|
pm2.65da |
|
52 |
20
|
adantr |
|
53 |
25
|
adantr |
|
54 |
22
|
adantr |
|
55 |
1 2 3 5 23 52 53 8 54
|
mirmir |
|
56 |
19
|
adantr |
|
57 |
27
|
adantr |
|
58 |
|
simpr |
|
59 |
1 2 3 5 23 52 8 56 57 58
|
mirln |
|
60 |
55 59
|
eqeltrrd |
|
61 |
51 60
|
mtand |
|
62 |
1 2 3 5 23 20 25 8 22
|
mirbtwn |
|
63 |
1 2 3 4 26 22 27 61 51 62
|
islnoppd |
|
64 |
|
eqidd |
|
65 |
|
nelne2 |
|
66 |
29 61 65
|
syl2anc |
|
67 |
66
|
necomd |
|
68 |
1 2 3 4 5 6 7 9 11 13
|
oppne2 |
|
69 |
68
|
adantr |
|
70 |
|
nelne2 |
|
71 |
29 69 70
|
syl2anc |
|
72 |
71
|
necomd |
|
73 |
15
|
eqcomd |
|
74 |
1 2 3 5 23 7 24 8 11 73
|
mircom |
|
75 |
74
|
adantr |
|
76 |
35
|
adantr |
|
77 |
9
|
adantr |
|
78 |
|
simpr |
|
79 |
1 2 3 5 23 20 25 8 76 77 22 78
|
mirbtwni |
|
80 |
75 79
|
eqeltrrd |
|
81 |
1 2 3 4 5 19 20 8 26 21 22 29 63 27 64 67 72 80
|
opphllem1 |
|
82 |
1 2 3 4 5 19 20 21 22 81
|
oppcom |
|
83 |
6
|
adantr |
|
84 |
7
|
adantr |
|
85 |
9
|
adantr |
|
86 |
10
|
adantr |
|
87 |
11
|
adantr |
|
88 |
12
|
adantr |
|
89 |
13
|
adantr |
|
90 |
14
|
adantr |
|
91 |
15
|
adantr |
|
92 |
16
|
adantr |
|
93 |
17
|
adantr |
|
94 |
|
simpr |
|
95 |
1 2 3 4 5 83 84 8 85 86 87 88 89 90 91 92 93 94
|
opphllem1 |
|
96 |
82 95 18
|
mpjaodan |
|