Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|
2 |
|
hpg.d |
|
3 |
|
hpg.i |
|
4 |
|
hpg.o |
|
5 |
|
opphl.l |
|
6 |
|
opphl.d |
|
7 |
|
opphl.g |
|
8 |
|
opphl.k |
|
9 |
|
opphllem5.n |
|
10 |
|
opphllem5.a |
|
11 |
|
opphllem5.c |
|
12 |
|
opphllem5.r |
|
13 |
|
opphllem5.s |
|
14 |
|
opphllem5.m |
|
15 |
|
opphllem5.o |
|
16 |
|
opphllem5.p |
|
17 |
|
opphllem5.q |
|
18 |
|
opphllem3.t |
|
19 |
|
opphllem3.l |
|
20 |
|
opphllem3.u |
|
21 |
|
opphllem3.v |
|
22 |
20
|
ad4antr |
|
23 |
10
|
ad4antr |
|
24 |
1 5 3 7 6 12
|
tglnpt |
|
25 |
24
|
ad4antr |
|
26 |
7
|
ad4antr |
|
27 |
|
simplr |
|
28 |
|
simprl |
|
29 |
5 7 16
|
perpln2 |
|
30 |
1 3 5 7 10 24 29
|
tglnne |
|
31 |
30
|
ad4antr |
|
32 |
11
|
ad4antr |
|
33 |
1 5 3 7 6 13
|
tglnpt |
|
34 |
33
|
ad4antr |
|
35 |
|
simprr |
|
36 |
1 2 3 26 34 32 25 27 35
|
tgcgrcomlr |
|
37 |
17
|
ad4antr |
|
38 |
5 26 37
|
perpln2 |
|
39 |
1 3 5 26 32 34 38
|
tglnne |
|
40 |
1 2 3 26 32 34 27 25 36 39
|
tgcgrneq |
|
41 |
1 3 8 22 23 25 26 27 28 31 40
|
hlbtwn |
|
42 |
|
eqid |
|
43 |
26
|
adantr |
|
44 |
14
|
ad5antr |
|
45 |
22
|
adantr |
|
46 |
|
simpllr |
|
47 |
25
|
adantr |
|
48 |
|
simpr |
|
49 |
1 2 3 5 42 43 9 8 44 45 46 47 48
|
mirhl |
|
50 |
|
eqidd |
|
51 |
21
|
ad5antr |
|
52 |
51
|
fveq2d |
|
53 |
|
simprr |
|
54 |
26
|
ad2antrr |
|
55 |
|
simplr |
|
56 |
14
|
ad6antr |
|
57 |
34
|
ad2antrr |
|
58 |
25
|
ad2antrr |
|
59 |
|
simprl |
|
60 |
59
|
eqcomd |
|
61 |
9
|
fveq1i |
|
62 |
1 2 3 5 42 7 14 9 24 21
|
mircom |
|
63 |
61 62
|
eqtr3id |
|
64 |
63
|
ad6antr |
|
65 |
1 2 3 5 42 54 55 56 57 58 60 64
|
miduniq |
|
66 |
65
|
fveq2d |
|
67 |
66 9
|
eqtr4di |
|
68 |
67
|
fveq1d |
|
69 |
53 68
|
eqtr2d |
|
70 |
18
|
ad4antr |
|
71 |
70
|
necomd |
|
72 |
6
|
ad4antr |
|
73 |
|
simp-4r |
|
74 |
1 5 3 26 72 73
|
tglnpt |
|
75 |
13
|
ad4antr |
|
76 |
12
|
ad4antr |
|
77 |
1 3 5 26 34 25 71 71 72 75 76
|
tglinethru |
|
78 |
16
|
ad4antr |
|
79 |
77 78
|
eqbrtrrd |
|
80 |
1 3 5 26 32 34 39
|
tglinecom |
|
81 |
37 77 80
|
3brtr3d |
|
82 |
73 77
|
eleqtrd |
|
83 |
|
simpllr |
|
84 |
1 2 3 5 26 42 34 25 71 23 32 74 79 81 82 83 27 28 35
|
opphllem |
|
85 |
69 84
|
r19.29a |
|
86 |
85
|
adantr |
|
87 |
50 52 86
|
breq123d |
|
88 |
49 87
|
mpbid |
|
89 |
26
|
adantr |
|
90 |
14
|
ad5antr |
|
91 |
1 2 3 5 42 7 14 9 20
|
mircl |
|
92 |
91
|
ad5antr |
|
93 |
32
|
adantr |
|
94 |
34
|
adantr |
|
95 |
|
simpr |
|
96 |
1 2 3 5 42 89 9 8 90 92 93 94 95
|
mirhl |
|
97 |
22
|
adantr |
|
98 |
1 2 3 5 42 89 90 9 97
|
mirmir |
|
99 |
25
|
adantr |
|
100 |
21
|
ad5antr |
|
101 |
1 2 3 5 42 89 90 9 99 100
|
mircom |
|
102 |
101
|
fveq2d |
|
103 |
|
simpllr |
|
104 |
85
|
adantr |
|
105 |
1 2 3 5 42 89 90 9 103 104
|
mircom |
|
106 |
98 102 105
|
breq123d |
|
107 |
96 106
|
mpbid |
|
108 |
88 107
|
impbida |
|
109 |
41 108
|
bitrd |
|
110 |
|
eqid |
|
111 |
1 2 3 110 7 33 11 24 10
|
legov |
|
112 |
19 111
|
mpbid |
|
113 |
112
|
ad2antrr |
|
114 |
109 113
|
r19.29a |
|
115 |
1 2 3 4 10 11
|
islnopp |
|
116 |
15 115
|
mpbid |
|
117 |
116
|
simprd |
|
118 |
114 117
|
r19.29a |
|