Metamath Proof Explorer


Theorem opphllem4

Description: Lemma for opphl . (Contributed by Thierry Arnoux, 22-Feb-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
opphl.k K = hl 𝒢 G
opphllem5.n N = pInv 𝒢 G M
opphllem5.a φ A P
opphllem5.c φ C P
opphllem5.r φ R D
opphllem5.s φ S D
opphllem5.m φ M P
opphllem5.o φ A O C
opphllem5.p φ D 𝒢 G A L R
opphllem5.q φ D 𝒢 G C L S
opphllem3.t φ R S
opphllem3.l φ S - ˙ C 𝒢 G R - ˙ A
opphllem3.u φ U P
opphllem3.v φ N R = S
opphllem4.u φ V P
opphllem4.1 φ U K R A
opphllem4.2 φ V K S C
Assertion opphllem4 φ U O V

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 opphl.k K = hl 𝒢 G
9 opphllem5.n N = pInv 𝒢 G M
10 opphllem5.a φ A P
11 opphllem5.c φ C P
12 opphllem5.r φ R D
13 opphllem5.s φ S D
14 opphllem5.m φ M P
15 opphllem5.o φ A O C
16 opphllem5.p φ D 𝒢 G A L R
17 opphllem5.q φ D 𝒢 G C L S
18 opphllem3.t φ R S
19 opphllem3.l φ S - ˙ C 𝒢 G R - ˙ A
20 opphllem3.u φ U P
21 opphllem3.v φ N R = S
22 opphllem4.u φ V P
23 opphllem4.1 φ U K R A
24 opphllem4.2 φ V K S C
25 eqid pInv 𝒢 G = pInv 𝒢 G
26 1 2 3 5 25 7 14 9 20 mircl φ N U P
27 1 5 3 7 6 13 tglnpt φ S P
28 1 5 3 7 6 12 tglnpt φ R P
29 18 necomd φ S R
30 1 2 3 5 25 7 14 9 28 mirbtwn φ M N R I R
31 21 oveq1d φ N R I R = S I R
32 30 31 eleqtrd φ M S I R
33 1 3 5 7 27 28 14 29 32 btwnlng1 φ M S L R
34 1 3 5 7 27 28 29 29 6 13 12 tglinethru φ D = S L R
35 33 34 eleqtrrd φ M D
36 1 2 3 4 5 6 7 10 11 15 oppne1 φ ¬ A D
37 1 3 8 20 10 28 7 23 hlne1 φ U R
38 37 necomd φ R U
39 1 3 8 20 10 28 7 5 23 hlln φ U A L R
40 1 3 8 20 10 28 7 23 hlne2 φ A R
41 1 3 5 7 28 20 10 38 39 40 lnrot1 φ A R L U
42 41 adantr φ U D A R L U
43 7 adantr φ U D G 𝒢 Tarski
44 28 adantr φ U D R P
45 20 adantr φ U D U P
46 38 adantr φ U D R U
47 6 adantr φ U D D ran L
48 12 adantr φ U D R D
49 simpr φ U D U D
50 1 3 5 43 44 45 46 46 47 48 49 tglinethru φ U D D = R L U
51 42 50 eleqtrrd φ U D A D
52 36 51 mtand φ ¬ U D
53 7 adantr φ N U D G 𝒢 Tarski
54 14 adantr φ N U D M P
55 20 adantr φ N U D U P
56 1 2 3 5 25 53 54 9 55 mirmir φ N U D N N U = U
57 6 adantr φ N U D D ran L
58 35 adantr φ N U D M D
59 simpr φ N U D N U D
60 1 2 3 5 25 53 9 57 58 59 mirln φ N U D N N U D
61 56 60 eqeltrrd φ N U D U D
62 52 61 mtand φ ¬ N U D
63 1 2 3 5 25 7 14 9 20 mirbtwn φ M N U I U
64 1 2 3 4 26 20 35 62 52 63 islnoppd φ N U O U
65 eqidd φ N U = N U
66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 opphllem3 φ U K R A N U K S C
67 23 66 mpbid φ N U K S C
68 1 3 8 22 11 27 7 24 hlcomd φ C K S V
69 1 3 8 26 11 22 7 27 67 68 hltr φ N U K S V
70 1 3 8 26 22 27 7 ishlg φ N U K S V N U S V S N U S I V V S I N U
71 69 70 mpbid φ N U S V S N U S I V V S I N U
72 71 simp1d φ N U S
73 1 3 8 11 22 27 7 68 hlne2 φ V S
74 71 simp3d φ N U S I V V S I N U
75 1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74 opphllem2 φ V O U
76 1 2 3 4 5 6 7 22 20 75 oppcom φ U O V