| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hpg.p |
|
| 2 |
|
hpg.d |
|
| 3 |
|
hpg.i |
|
| 4 |
|
hpg.o |
|
| 5 |
|
opphl.l |
|
| 6 |
|
opphl.d |
|
| 7 |
|
opphl.g |
|
| 8 |
|
opphl.k |
|
| 9 |
|
opphllem5.n |
|
| 10 |
|
opphllem5.a |
|
| 11 |
|
opphllem5.c |
|
| 12 |
|
opphllem5.r |
|
| 13 |
|
opphllem5.s |
|
| 14 |
|
opphllem5.m |
|
| 15 |
|
opphllem5.o |
|
| 16 |
|
opphllem5.p |
|
| 17 |
|
opphllem5.q |
|
| 18 |
|
opphllem3.t |
|
| 19 |
|
opphllem3.l |
|
| 20 |
|
opphllem3.u |
|
| 21 |
|
opphllem3.v |
|
| 22 |
|
opphllem4.u |
|
| 23 |
|
opphllem4.1 |
|
| 24 |
|
opphllem4.2 |
|
| 25 |
|
eqid |
|
| 26 |
1 2 3 5 25 7 14 9 20
|
mircl |
|
| 27 |
1 5 3 7 6 13
|
tglnpt |
|
| 28 |
1 5 3 7 6 12
|
tglnpt |
|
| 29 |
18
|
necomd |
|
| 30 |
1 2 3 5 25 7 14 9 28
|
mirbtwn |
|
| 31 |
21
|
oveq1d |
|
| 32 |
30 31
|
eleqtrd |
|
| 33 |
1 3 5 7 27 28 14 29 32
|
btwnlng1 |
|
| 34 |
1 3 5 7 27 28 29 29 6 13 12
|
tglinethru |
|
| 35 |
33 34
|
eleqtrrd |
|
| 36 |
1 2 3 4 5 6 7 10 11 15
|
oppne1 |
|
| 37 |
1 3 8 20 10 28 7 23
|
hlne1 |
|
| 38 |
37
|
necomd |
|
| 39 |
1 3 8 20 10 28 7 5 23
|
hlln |
|
| 40 |
1 3 8 20 10 28 7 23
|
hlne2 |
|
| 41 |
1 3 5 7 28 20 10 38 39 40
|
lnrot1 |
|
| 42 |
41
|
adantr |
|
| 43 |
7
|
adantr |
|
| 44 |
28
|
adantr |
|
| 45 |
20
|
adantr |
|
| 46 |
38
|
adantr |
|
| 47 |
6
|
adantr |
|
| 48 |
12
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
1 3 5 43 44 45 46 46 47 48 49
|
tglinethru |
|
| 51 |
42 50
|
eleqtrrd |
|
| 52 |
36 51
|
mtand |
|
| 53 |
7
|
adantr |
|
| 54 |
14
|
adantr |
|
| 55 |
20
|
adantr |
|
| 56 |
1 2 3 5 25 53 54 9 55
|
mirmir |
|
| 57 |
6
|
adantr |
|
| 58 |
35
|
adantr |
|
| 59 |
|
simpr |
|
| 60 |
1 2 3 5 25 53 9 57 58 59
|
mirln |
|
| 61 |
56 60
|
eqeltrrd |
|
| 62 |
52 61
|
mtand |
|
| 63 |
1 2 3 5 25 7 14 9 20
|
mirbtwn |
|
| 64 |
1 2 3 4 26 20 35 62 52 63
|
islnoppd |
|
| 65 |
|
eqidd |
|
| 66 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
opphllem3 |
|
| 67 |
23 66
|
mpbid |
|
| 68 |
1 3 8 22 11 27 7 24
|
hlcomd |
|
| 69 |
1 3 8 26 11 22 7 27 67 68
|
hltr |
|
| 70 |
1 3 8 26 22 27 7
|
ishlg |
|
| 71 |
69 70
|
mpbid |
|
| 72 |
71
|
simp1d |
|
| 73 |
1 3 8 11 22 27 7 68
|
hlne2 |
|
| 74 |
71
|
simp3d |
|
| 75 |
1 2 3 4 5 6 7 9 26 22 20 13 64 35 65 72 73 74
|
opphllem2 |
|
| 76 |
1 2 3 4 5 6 7 22 20 75
|
oppcom |
|