Metamath Proof Explorer


Theorem opphllem5

Description: Second part of Lemma 9.4 of Schwabhauser p. 68. (Contributed by Thierry Arnoux, 2-Mar-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
opphl.k K = hl 𝒢 G
opphllem5.n N = pInv 𝒢 G M
opphllem5.a φ A P
opphllem5.c φ C P
opphllem5.r φ R D
opphllem5.s φ S D
opphllem5.m φ M P
opphllem5.o φ A O C
opphllem5.p φ D 𝒢 G A L R
opphllem5.q φ D 𝒢 G C L S
opphllem5.u φ U P
opphllem5.v φ V P
opphllem5.1 φ U K R A
opphllem5.2 φ V K S C
Assertion opphllem5 φ U O V

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 opphl.k K = hl 𝒢 G
9 opphllem5.n N = pInv 𝒢 G M
10 opphllem5.a φ A P
11 opphllem5.c φ C P
12 opphllem5.r φ R D
13 opphllem5.s φ S D
14 opphllem5.m φ M P
15 opphllem5.o φ A O C
16 opphllem5.p φ D 𝒢 G A L R
17 opphllem5.q φ D 𝒢 G C L S
18 opphllem5.u φ U P
19 opphllem5.v φ V P
20 opphllem5.1 φ U K R A
21 opphllem5.2 φ V K S C
22 1 5 3 7 6 12 tglnpt φ R P
23 1 3 8 18 10 22 7 20 hlne2 φ A R
24 1 3 5 7 10 22 23 tglinecom φ A L R = R L A
25 16 24 breqtrd φ D 𝒢 G R L A
26 1 3 8 18 10 22 7 20 hlcomd φ A K R U
27 1 2 3 5 7 6 8 12 10 18 25 26 hlperpnel φ ¬ U D
28 27 ad3antrrr φ R = S t D t A I C ¬ U D
29 1 5 3 7 6 13 tglnpt φ S P
30 1 3 8 19 11 29 7 21 hlne2 φ C S
31 1 3 5 7 11 29 30 tglinecom φ C L S = S L C
32 17 31 breqtrd φ D 𝒢 G S L C
33 1 3 8 19 11 29 7 21 hlcomd φ C K S V
34 1 2 3 5 7 6 8 13 11 19 32 33 hlperpnel φ ¬ V D
35 34 ad3antrrr φ R = S t D t A I C ¬ V D
36 simplr φ R = S t D t A I C t D
37 simpr φ R = S t D t A I C R = t R = t
38 eqid pInv 𝒢 G = pInv 𝒢 G
39 7 ad4antr φ R = S t D t A I C R t G 𝒢 Tarski
40 11 ad4antr φ R = S t D t A I C R t C P
41 22 ad4antr φ R = S t D t A I C R t R P
42 7 ad3antrrr φ R = S t D t A I C G 𝒢 Tarski
43 6 ad3antrrr φ R = S t D t A I C D ran L
44 1 5 3 42 43 36 tglnpt φ R = S t D t A I C t P
45 44 adantr φ R = S t D t A I C R t t P
46 10 ad4antr φ R = S t D t A I C R t A P
47 29 ad4antr φ R = S t D t A I C R t S P
48 simpllr φ R = S t D t A I C R = S
49 1 3 5 7 11 29 30 tglinerflx2 φ S C L S
50 49 ad3antrrr φ R = S t D t A I C S C L S
51 48 50 eqeltrd φ R = S t D t A I C R C L S
52 51 adantr φ R = S t D t A I C R t R C L S
53 5 7 17 perpln2 φ C L S ran L
54 1 2 3 5 7 6 53 17 perpcom φ C L S 𝒢 G D
55 54 ad4antr φ R = S t D t A I C R t C L S 𝒢 G D
56 simpr φ R = S t D t A I C R t R t
57 6 ad4antr φ R = S t D t A I C R t D ran L
58 12 ad4antr φ R = S t D t A I C R t R D
59 simpllr φ R = S t D t A I C R t t D
60 1 3 5 39 41 45 56 56 57 58 59 tglinethru φ R = S t D t A I C R t D = R L t
61 55 60 breqtrd φ R = S t D t A I C R t C L S 𝒢 G R L t
62 1 2 3 5 39 40 47 52 45 61 perprag φ R = S t D t A I C R t ⟨“ CRt ”⟩ 𝒢 G
63 1 3 5 7 10 22 23 tglinerflx2 φ R A L R
64 63 ad4antr φ R = S t D t A I C R t R A L R
65 5 7 16 perpln2 φ A L R ran L
66 1 2 3 5 7 6 65 16 perpcom φ A L R 𝒢 G D
67 66 ad4antr φ R = S t D t A I C R t A L R 𝒢 G D
68 67 60 breqtrd φ R = S t D t A I C R t A L R 𝒢 G R L t
69 1 2 3 5 39 46 41 64 45 68 perprag φ R = S t D t A I C R t ⟨“ ARt ”⟩ 𝒢 G
70 simplr φ R = S t D t A I C R t t A I C
71 1 2 3 39 46 45 40 70 tgbtwncom φ R = S t D t A I C R t t C I A
72 1 2 3 5 38 39 40 41 45 46 62 69 71 ragflat2 φ R = S t D t A I C R t R = t
73 37 72 pm2.61dane φ R = S t D t A I C R = t
74 10 ad3antrrr φ R = S t D t A I C A P
75 18 ad3antrrr φ R = S t D t A I C U P
76 19 ad3antrrr φ R = S t D t A I C V P
77 22 ad3antrrr φ R = S t D t A I C R P
78 26 ad3antrrr φ R = S t D t A I C A K R U
79 11 ad3antrrr φ R = S t D t A I C C P
80 21 ad3antrrr φ R = S t D t A I C V K S C
81 48 fveq2d φ R = S t D t A I C K R = K S
82 81 breqd φ R = S t D t A I C V K R C V K S C
83 80 82 mpbird φ R = S t D t A I C V K R C
84 1 3 8 76 79 77 42 83 hlcomd φ R = S t D t A I C C K R V
85 simpr φ R = S t D t A I C t A I C
86 73 85 eqeltrd φ R = S t D t A I C R A I C
87 1 2 3 42 74 77 79 86 tgbtwncom φ R = S t D t A I C R C I A
88 1 3 8 79 76 74 42 77 84 87 btwnhl φ R = S t D t A I C R V I A
89 1 2 3 42 76 77 74 88 tgbtwncom φ R = S t D t A I C R A I V
90 1 3 8 74 75 76 42 77 78 89 btwnhl φ R = S t D t A I C R U I V
91 73 90 eqeltrrd φ R = S t D t A I C t U I V
92 rspe t D t U I V t D t U I V
93 36 91 92 syl2anc φ R = S t D t A I C t D t U I V
94 28 35 93 jca31 φ R = S t D t A I C ¬ U D ¬ V D t D t U I V
95 1 2 3 4 18 19 islnopp φ U O V ¬ U D ¬ V D t D t U I V
96 95 ad3antrrr φ R = S t D t A I C U O V ¬ U D ¬ V D t D t U I V
97 94 96 mpbird φ R = S t D t A I C U O V
98 1 2 3 4 10 11 islnopp φ A O C ¬ A D ¬ C D t D t A I C
99 15 98 mpbid φ ¬ A D ¬ C D t D t A I C
100 99 simprd φ t D t A I C
101 100 adantr φ R = S t D t A I C
102 97 101 r19.29a φ R = S U O V
103 6 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A D ran L
104 7 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A G 𝒢 Tarski
105 eqid pInv 𝒢 G m = pInv 𝒢 G m
106 10 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A A P
107 11 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A C P
108 12 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A R D
109 13 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A S D
110 simpllr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A m P
111 15 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A A O C
112 16 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A D 𝒢 G A L R
113 17 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A D 𝒢 G C L S
114 simpr φ R S R S
115 114 ad3antrrr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A R S
116 simpr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A S - ˙ C 𝒢 G R - ˙ A
117 18 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A U P
118 simplr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A S = pInv 𝒢 G m R
119 118 eqcomd φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A pInv 𝒢 G m R = S
120 19 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A V P
121 20 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A U K R A
122 21 ad4antr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A V K S C
123 1 2 3 4 5 103 104 8 105 106 107 108 109 110 111 112 113 115 116 117 119 120 121 122 opphllem4 φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A U O V
124 6 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C D ran L
125 7 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C G 𝒢 Tarski
126 19 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C V P
127 18 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C U P
128 11 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C C P
129 10 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C A P
130 13 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C S D
131 12 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C R D
132 simpllr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C m P
133 15 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C A O C
134 1 2 3 4 5 124 125 129 128 133 oppcom φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C C O A
135 17 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C D 𝒢 G C L S
136 16 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C D 𝒢 G A L R
137 114 necomd φ R S S R
138 137 ad3antrrr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C S R
139 simpr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C R - ˙ A 𝒢 G S - ˙ C
140 22 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C R P
141 simplr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C S = pInv 𝒢 G m R
142 141 eqcomd φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C pInv 𝒢 G m R = S
143 1 2 3 5 38 125 132 105 140 142 mircom φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C pInv 𝒢 G m S = R
144 21 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C V K S C
145 20 ad4antr φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C U K R A
146 1 2 3 4 5 124 125 8 105 128 129 130 131 132 134 135 136 138 139 126 143 127 144 145 opphllem4 φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C V O U
147 1 2 3 4 5 124 125 126 127 146 oppcom φ R S m P S = pInv 𝒢 G m R R - ˙ A 𝒢 G S - ˙ C U O V
148 eqid 𝒢 G = 𝒢 G
149 1 2 3 148 7 29 11 22 10 legtrid φ S - ˙ C 𝒢 G R - ˙ A R - ˙ A 𝒢 G S - ˙ C
150 149 ad3antrrr φ R S m P S = pInv 𝒢 G m R S - ˙ C 𝒢 G R - ˙ A R - ˙ A 𝒢 G S - ˙ C
151 123 147 150 mpjaodan φ R S m P S = pInv 𝒢 G m R U O V
152 7 adantr φ R S G 𝒢 Tarski
153 22 adantr φ R S R P
154 29 adantr φ R S S P
155 1 2 3 4 5 6 7 10 11 15 opptgdim2 φ G Dim 𝒢 2
156 155 adantr φ R S G Dim 𝒢 2
157 1 2 3 5 152 38 153 154 156 midex φ R S m P S = pInv 𝒢 G m R
158 151 157 r19.29a φ R S U O V
159 102 158 pm2.61dane φ U O V