Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|
2 |
|
hpg.d |
|
3 |
|
hpg.i |
|
4 |
|
hpg.o |
|
5 |
|
opphl.l |
|
6 |
|
opphl.d |
|
7 |
|
opphl.g |
|
8 |
|
opphl.k |
|
9 |
|
opphllem5.n |
|
10 |
|
opphllem5.a |
|
11 |
|
opphllem5.c |
|
12 |
|
opphllem5.r |
|
13 |
|
opphllem5.s |
|
14 |
|
opphllem5.m |
|
15 |
|
opphllem5.o |
|
16 |
|
opphllem5.p |
|
17 |
|
opphllem5.q |
|
18 |
|
opphllem5.u |
|
19 |
|
opphllem6.v |
|
20 |
|
eqid |
|
21 |
7
|
adantr |
|
22 |
14
|
adantr |
|
23 |
10
|
adantr |
|
24 |
11
|
adantr |
|
25 |
18
|
adantr |
|
26 |
1 5 3 7 6 12
|
tglnpt |
|
27 |
5 7 16
|
perpln2 |
|
28 |
1 3 5 7 10 26 27
|
tglnne |
|
29 |
28
|
adantr |
|
30 |
19
|
adantr |
|
31 |
|
simpr |
|
32 |
30 31
|
eqtr4d |
|
33 |
1 2 3 5 20 7 14 9 26
|
mirinv |
|
34 |
33
|
adantr |
|
35 |
32 34
|
mpbid |
|
36 |
29 35
|
neeqtrrd |
|
37 |
1 5 3 7 6 13
|
tglnpt |
|
38 |
5 7 17
|
perpln2 |
|
39 |
1 3 5 7 11 37 38
|
tglnne |
|
40 |
39
|
adantr |
|
41 |
35 31
|
eqtrd |
|
42 |
40 41
|
neeqtrrd |
|
43 |
|
simpr |
|
44 |
7
|
ad4antr |
|
45 |
11
|
ad4antr |
|
46 |
26
|
ad4antr |
|
47 |
7
|
ad3antrrr |
|
48 |
6
|
ad3antrrr |
|
49 |
|
simplr |
|
50 |
1 5 3 47 48 49
|
tglnpt |
|
51 |
50
|
adantr |
|
52 |
10
|
ad4antr |
|
53 |
37
|
ad4antr |
|
54 |
|
simpllr |
|
55 |
1 3 5 7 11 37 39
|
tglinerflx2 |
|
56 |
55
|
ad3antrrr |
|
57 |
54 56
|
eqeltrd |
|
58 |
57
|
adantr |
|
59 |
1 2 3 5 7 6 38 17
|
perpcom |
|
60 |
59
|
ad4antr |
|
61 |
|
simpr |
|
62 |
6
|
ad4antr |
|
63 |
12
|
ad4antr |
|
64 |
|
simpllr |
|
65 |
1 3 5 44 46 51 61 61 62 63 64
|
tglinethru |
|
66 |
60 65
|
breqtrd |
|
67 |
1 2 3 5 44 45 53 58 51 66
|
perprag |
|
68 |
1 3 5 7 10 26 28
|
tglinerflx2 |
|
69 |
68
|
ad4antr |
|
70 |
1 2 3 5 7 6 27 16
|
perpcom |
|
71 |
70
|
ad4antr |
|
72 |
71 65
|
breqtrd |
|
73 |
1 2 3 5 44 52 46 69 51 72
|
perprag |
|
74 |
|
simplr |
|
75 |
1 2 3 44 52 51 45 74
|
tgbtwncom |
|
76 |
1 2 3 5 20 44 45 46 51 52 67 73 75
|
ragflat2 |
|
77 |
43 76
|
pm2.61dane |
|
78 |
|
simpr |
|
79 |
77 78
|
eqeltrd |
|
80 |
1 2 3 4 10 11
|
islnopp |
|
81 |
15 80
|
mpbid |
|
82 |
81
|
simprd |
|
83 |
82
|
adantr |
|
84 |
79 83
|
r19.29a |
|
85 |
35 84
|
eqeltrd |
|
86 |
1 2 3 5 20 21 9 8 22 23 24 25 36 42 85
|
mirbtwnhl |
|
87 |
35
|
fveq2d |
|
88 |
87
|
breqd |
|
89 |
41
|
fveq2d |
|
90 |
89
|
breqd |
|
91 |
86 88 90
|
3bitr3d |
|
92 |
6
|
ad2antrr |
|
93 |
7
|
ad2antrr |
|
94 |
10
|
ad2antrr |
|
95 |
11
|
ad2antrr |
|
96 |
12
|
ad2antrr |
|
97 |
13
|
ad2antrr |
|
98 |
14
|
ad2antrr |
|
99 |
15
|
ad2antrr |
|
100 |
16
|
ad2antrr |
|
101 |
17
|
ad2antrr |
|
102 |
|
simplr |
|
103 |
|
simpr |
|
104 |
18
|
ad2antrr |
|
105 |
19
|
ad2antrr |
|
106 |
1 2 3 4 5 92 93 8 9 94 95 96 97 98 99 100 101 102 103 104 105
|
opphllem3 |
|
107 |
6
|
ad2antrr |
|
108 |
7
|
ad2antrr |
|
109 |
11
|
ad2antrr |
|
110 |
10
|
ad2antrr |
|
111 |
13
|
ad2antrr |
|
112 |
12
|
ad2antrr |
|
113 |
14
|
ad2antrr |
|
114 |
15
|
ad2antrr |
|
115 |
1 2 3 4 5 107 108 110 109 114
|
oppcom |
|
116 |
17
|
ad2antrr |
|
117 |
16
|
ad2antrr |
|
118 |
|
simpr |
|
119 |
118
|
necomd |
|
120 |
119
|
adantr |
|
121 |
|
simpr |
|
122 |
18
|
ad2antrr |
|
123 |
1 2 3 5 20 108 113 9 122
|
mircl |
|
124 |
26
|
ad2antrr |
|
125 |
19
|
ad2antrr |
|
126 |
1 2 3 5 20 108 113 9 124 125
|
mircom |
|
127 |
1 2 3 4 5 107 108 8 9 109 110 111 112 113 115 116 117 120 121 123 126
|
opphllem3 |
|
128 |
1 2 3 5 20 108 113 9 122
|
mirmir |
|
129 |
128
|
breq1d |
|
130 |
127 129
|
bitr2d |
|
131 |
|
eqid |
|
132 |
1 2 3 131 7 37 11 26 10
|
legtrid |
|
133 |
132
|
adantr |
|
134 |
106 130 133
|
mpjaodan |
|
135 |
91 134
|
pm2.61dane |
|