Metamath Proof Explorer


Theorem oppne1

Description: Points lying on opposite sides of a line cannot be on the line. (Contributed by Thierry Arnoux, 3-Mar-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
oppcom.a φ A P
oppcom.b φ B P
oppcom.o φ A O B
Assertion oppne1 φ ¬ A D

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 oppcom.a φ A P
9 oppcom.b φ B P
10 oppcom.o φ A O B
11 1 2 3 4 8 9 islnopp φ A O B ¬ A D ¬ B D t D t A I B
12 10 11 mpbid φ ¬ A D ¬ B D t D t A I B
13 12 simplld φ ¬ A D