Metamath Proof Explorer


Theorem oppne3

Description: Points lying on opposite sides of a line cannot be equal. (Contributed by Thierry Arnoux, 3-Aug-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
oppcom.a φ A P
oppcom.b φ B P
oppcom.o φ A O B
Assertion oppne3 φ A B

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 oppcom.a φ A P
9 oppcom.b φ B P
10 oppcom.o φ A O B
11 1 2 3 4 5 6 7 8 9 10 oppne1 φ ¬ A D
12 7 ad3antrrr φ A = B t D t A I B G 𝒢 Tarski
13 8 ad3antrrr φ A = B t D t A I B A P
14 6 ad3antrrr φ A = B t D t A I B D ran L
15 simplr φ A = B t D t A I B t D
16 1 5 3 12 14 15 tglnpt φ A = B t D t A I B t P
17 simpr φ A = B t D t A I B t A I B
18 simpllr φ A = B t D t A I B A = B
19 18 oveq2d φ A = B t D t A I B A I A = A I B
20 17 19 eleqtrrd φ A = B t D t A I B t A I A
21 1 2 3 12 13 16 20 axtgbtwnid φ A = B t D t A I B A = t
22 21 15 eqeltrd φ A = B t D t A I B A D
23 1 2 3 4 8 9 islnopp φ A O B ¬ A D ¬ B D t D t A I B
24 10 23 mpbid φ ¬ A D ¬ B D t D t A I B
25 24 simprd φ t D t A I B
26 25 adantr φ A = B t D t A I B
27 22 26 r19.29a φ A = B A D
28 11 27 mtand φ ¬ A = B
29 28 neqned φ A B