Metamath Proof Explorer


Theorem oppnid

Description: The "opposite to a line" relation is irreflexive. (Contributed by Thierry Arnoux, 4-Mar-2020)

Ref Expression
Hypotheses hpg.p P = Base G
hpg.d - ˙ = dist G
hpg.i I = Itv G
hpg.o O = a b | a P D b P D t D t a I b
opphl.l L = Line 𝒢 G
opphl.d φ D ran L
opphl.g φ G 𝒢 Tarski
oppnid.1 φ A P
Assertion oppnid φ ¬ A O A

Proof

Step Hyp Ref Expression
1 hpg.p P = Base G
2 hpg.d - ˙ = dist G
3 hpg.i I = Itv G
4 hpg.o O = a b | a P D b P D t D t a I b
5 opphl.l L = Line 𝒢 G
6 opphl.d φ D ran L
7 opphl.g φ G 𝒢 Tarski
8 oppnid.1 φ A P
9 7 ad3antrrr φ A O A t D t A I A G 𝒢 Tarski
10 8 ad3antrrr φ A O A t D t A I A A P
11 6 ad3antrrr φ A O A t D t A I A D ran L
12 simplr φ A O A t D t A I A t D
13 1 5 3 9 11 12 tglnpt φ A O A t D t A I A t P
14 simpr φ A O A t D t A I A t A I A
15 1 2 3 9 10 13 14 axtgbtwnid φ A O A t D t A I A A = t
16 15 12 eqeltrd φ A O A t D t A I A A D
17 1 2 3 4 8 8 islnopp φ A O A ¬ A D ¬ A D t D t A I A
18 17 simplbda φ A O A t D t A I A
19 16 18 r19.29a φ A O A A D
20 17 simprbda φ A O A ¬ A D ¬ A D
21 20 simpld φ A O A ¬ A D
22 19 21 pm2.65da φ ¬ A O A