Metamath Proof Explorer


Theorem opposet

Description: Every orthoposet is a poset. (Contributed by NM, 12-Oct-2011)

Ref Expression
Assertion opposet K OP K Poset

Proof

Step Hyp Ref Expression
1 eqid Base K = Base K
2 eqid lub K = lub K
3 eqid glb K = glb K
4 eqid K = K
5 eqid oc K = oc K
6 eqid join K = join K
7 eqid meet K = meet K
8 eqid 0. K = 0. K
9 eqid 1. K = 1. K
10 1 2 3 4 5 6 7 8 9 isopos K OP K Poset Base K dom lub K Base K dom glb K x Base K y Base K oc K x Base K oc K oc K x = x x K y oc K y K oc K x x join K oc K x = 1. K x meet K oc K x = 0. K
11 simpl1 K Poset Base K dom lub K Base K dom glb K x Base K y Base K oc K x Base K oc K oc K x = x x K y oc K y K oc K x x join K oc K x = 1. K x meet K oc K x = 0. K K Poset
12 10 11 sylbi K OP K Poset