Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
opposet
Next ⟩
oposlem
Metamath Proof Explorer
Ascii
Unicode
Theorem
opposet
Description:
Every orthoposet is a poset.
(Contributed by
NM
, 12-Oct-2011)
Ref
Expression
Assertion
opposet
⊢
K
∈
OP
→
K
∈
Poset
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
K
=
Base
K
2
eqid
⊢
lub
⁡
K
=
lub
⁡
K
3
eqid
⊢
glb
⁡
K
=
glb
⁡
K
4
eqid
⊢
≤
K
=
≤
K
5
eqid
⊢
oc
⁡
K
=
oc
⁡
K
6
eqid
⊢
join
⁡
K
=
join
⁡
K
7
eqid
⊢
meet
⁡
K
=
meet
⁡
K
8
eqid
⊢
0.
⁡
K
=
0.
⁡
K
9
eqid
⊢
1.
⁡
K
=
1.
⁡
K
10
1
2
3
4
5
6
7
8
9
isopos
⊢
K
∈
OP
↔
K
∈
Poset
∧
Base
K
∈
dom
⁡
lub
⁡
K
∧
Base
K
∈
dom
⁡
glb
⁡
K
∧
∀
x
∈
Base
K
∀
y
∈
Base
K
oc
⁡
K
⁡
x
∈
Base
K
∧
oc
⁡
K
⁡
oc
⁡
K
⁡
x
=
x
∧
x
≤
K
y
→
oc
⁡
K
⁡
y
≤
K
oc
⁡
K
⁡
x
∧
x
join
⁡
K
oc
⁡
K
⁡
x
=
1.
⁡
K
∧
x
meet
⁡
K
oc
⁡
K
⁡
x
=
0.
⁡
K
11
simpl1
⊢
K
∈
Poset
∧
Base
K
∈
dom
⁡
lub
⁡
K
∧
Base
K
∈
dom
⁡
glb
⁡
K
∧
∀
x
∈
Base
K
∀
y
∈
Base
K
oc
⁡
K
⁡
x
∈
Base
K
∧
oc
⁡
K
⁡
oc
⁡
K
⁡
x
=
x
∧
x
≤
K
y
→
oc
⁡
K
⁡
y
≤
K
oc
⁡
K
⁡
x
∧
x
join
⁡
K
oc
⁡
K
⁡
x
=
1.
⁡
K
∧
x
meet
⁡
K
oc
⁡
K
⁡
x
=
0.
⁡
K
→
K
∈
Poset
12
10
11
sylbi
⊢
K
∈
OP
→
K
∈
Poset