Step |
Hyp |
Ref |
Expression |
1 |
|
hpg.p |
|
2 |
|
hpg.d |
|
3 |
|
hpg.i |
|
4 |
|
hpg.o |
|
5 |
|
opphl.l |
|
6 |
|
opphl.d |
|
7 |
|
opphl.g |
|
8 |
|
opphl.k |
|
9 |
|
oppperpex.1 |
|
10 |
|
oppperpex.2 |
|
11 |
|
oppperpex.3 |
|
12 |
|
oppperpex.4 |
|
13 |
|
simprrl |
|
14 |
7
|
ad2antrr |
|
15 |
6
|
ad2antrr |
|
16 |
9
|
ad2antrr |
|
17 |
1 5 3 14 15 16
|
tglnpt |
|
18 |
|
simplr |
|
19 |
1 5 3 14 15 18
|
tglnpt |
|
20 |
|
simpr |
|
21 |
1 3 5 14 17 19 20 20 15 16 18
|
tglinethru |
|
22 |
21
|
adantr |
|
23 |
13 22
|
breqtrrd |
|
24 |
11
|
ad3antrrr |
|
25 |
14
|
adantr |
|
26 |
15
|
adantr |
|
27 |
16
|
adantr |
|
28 |
|
simprl |
|
29 |
1 2 3 5 25 26 27 28 23
|
footne |
|
30 |
20
|
ad3antrrr |
|
31 |
30
|
neneqd |
|
32 |
|
simprrl |
|
33 |
32
|
orcomd |
|
34 |
33
|
ord |
|
35 |
31 34
|
mpd |
|
36 |
21
|
ad3antrrr |
|
37 |
35 36
|
eleqtrrd |
|
38 |
|
simprrr |
|
39 |
37 38
|
jca |
|
40 |
39
|
ex |
|
41 |
40
|
reximdv2 |
|
42 |
41
|
impr |
|
43 |
42
|
anasss |
|
44 |
24 29 43
|
jca31 |
|
45 |
10
|
ad2antrr |
|
46 |
45
|
ad2antrr |
|
47 |
|
simplr |
|
48 |
1 2 3 4 46 47
|
islnopp |
|
49 |
48
|
adantrr |
|
50 |
49
|
anasss |
|
51 |
44 50
|
mpbird |
|
52 |
23 51
|
jca |
|
53 |
12
|
ad2antrr |
|
54 |
1 2 3 5 14 17 19 45 20 53
|
colperpex |
|
55 |
52 54
|
reximddv |
|
56 |
1 3 5 7 6 9
|
tglnpt2 |
|
57 |
55 56
|
r19.29a |
|