Metamath Proof Explorer


Theorem oppr0

Description: Additive identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprbas.1 O = opp r R
oppr0.2 0 ˙ = 0 R
Assertion oppr0 0 ˙ = 0 O

Proof

Step Hyp Ref Expression
1 opprbas.1 O = opp r R
2 oppr0.2 0 ˙ = 0 R
3 eqid Base R = Base R
4 eqid + R = + R
5 3 4 2 grpidval 0 ˙ = ι y | y Base R x Base R y + R x = x x + R y = x
6 1 3 opprbas Base R = Base O
7 1 4 oppradd + R = + O
8 eqid 0 O = 0 O
9 6 7 8 grpidval 0 O = ι y | y Base R x Base R y + R x = x x + R y = x
10 5 9 eqtr4i 0 ˙ = 0 O