Metamath Proof Explorer


Theorem oppr1

Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprbas.1 O = opp r R
oppr1.2 1 ˙ = 1 R
Assertion oppr1 1 ˙ = 1 O

Proof

Step Hyp Ref Expression
1 opprbas.1 O = opp r R
2 oppr1.2 1 ˙ = 1 R
3 eqid Base R = Base R
4 eqid R = R
5 eqid O = O
6 3 4 1 5 opprmul x O y = y R x
7 6 eqeq1i x O y = y y R x = y
8 3 4 1 5 opprmul y O x = x R y
9 8 eqeq1i y O x = y x R y = y
10 7 9 anbi12ci x O y = y y O x = y x R y = y y R x = y
11 10 ralbii y Base R x O y = y y O x = y y Base R x R y = y y R x = y
12 11 anbi2i x Base R y Base R x O y = y y O x = y x Base R y Base R x R y = y y R x = y
13 12 iotabii ι x | x Base R y Base R x O y = y y O x = y = ι x | x Base R y Base R x R y = y y R x = y
14 eqid mulGrp O = mulGrp O
15 1 3 opprbas Base R = Base O
16 14 15 mgpbas Base R = Base mulGrp O
17 14 5 mgpplusg O = + mulGrp O
18 eqid 0 mulGrp O = 0 mulGrp O
19 16 17 18 grpidval 0 mulGrp O = ι x | x Base R y Base R x O y = y y O x = y
20 eqid mulGrp R = mulGrp R
21 20 3 mgpbas Base R = Base mulGrp R
22 20 4 mgpplusg R = + mulGrp R
23 eqid 0 mulGrp R = 0 mulGrp R
24 21 22 23 grpidval 0 mulGrp R = ι x | x Base R y Base R x R y = y y R x = y
25 13 19 24 3eqtr4i 0 mulGrp O = 0 mulGrp R
26 eqid 1 O = 1 O
27 14 26 ringidval 1 O = 0 mulGrp O
28 20 2 ringidval 1 ˙ = 0 mulGrp R
29 25 27 28 3eqtr4ri 1 ˙ = 1 O