Metamath Proof Explorer


Theorem oppr2idl

Description: Two sided ideal of the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses oppreqg.o O = opp r R
oppr2idl.2 φ R Ring
Assertion oppr2idl φ 2Ideal R = 2Ideal O

Proof

Step Hyp Ref Expression
1 oppreqg.o O = opp r R
2 oppr2idl.2 φ R Ring
3 incom LIdeal R LIdeal O = LIdeal O LIdeal R
4 1 2 opprlidlabs φ LIdeal R = LIdeal opp r O
5 4 ineq2d φ LIdeal O LIdeal R = LIdeal O LIdeal opp r O
6 3 5 eqtrid φ LIdeal R LIdeal O = LIdeal O LIdeal opp r O
7 eqid LIdeal R = LIdeal R
8 eqid LIdeal O = LIdeal O
9 eqid 2Ideal R = 2Ideal R
10 7 1 8 9 2idlval 2Ideal R = LIdeal R LIdeal O
11 eqid opp r O = opp r O
12 eqid LIdeal opp r O = LIdeal opp r O
13 eqid 2Ideal O = 2Ideal O
14 8 11 12 13 2idlval 2Ideal O = LIdeal O LIdeal opp r O
15 6 10 14 3eqtr4g φ 2Ideal R = 2Ideal O