Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Maximal Ideals
oppr2idl
Next ⟩
opprmxidlabs
Metamath Proof Explorer
Ascii
Unicode
Theorem
oppr2idl
Description:
Two sided ideal of the opposite ring.
(Contributed by
Thierry Arnoux
, 9-Mar-2025)
Ref
Expression
Hypotheses
oppreqg.o
⊢
O
=
opp
r
⁡
R
oppr2idl.2
⊢
φ
→
R
∈
Ring
Assertion
oppr2idl
⊢
φ
→
2Ideal
⁡
R
=
2Ideal
⁡
O
Proof
Step
Hyp
Ref
Expression
1
oppreqg.o
⊢
O
=
opp
r
⁡
R
2
oppr2idl.2
⊢
φ
→
R
∈
Ring
3
incom
⊢
LIdeal
⁡
R
∩
LIdeal
⁡
O
=
LIdeal
⁡
O
∩
LIdeal
⁡
R
4
1
2
opprlidlabs
⊢
φ
→
LIdeal
⁡
R
=
LIdeal
⁡
opp
r
⁡
O
5
4
ineq2d
⊢
φ
→
LIdeal
⁡
O
∩
LIdeal
⁡
R
=
LIdeal
⁡
O
∩
LIdeal
⁡
opp
r
⁡
O
6
3
5
eqtrid
⊢
φ
→
LIdeal
⁡
R
∩
LIdeal
⁡
O
=
LIdeal
⁡
O
∩
LIdeal
⁡
opp
r
⁡
O
7
eqid
⊢
LIdeal
⁡
R
=
LIdeal
⁡
R
8
eqid
⊢
LIdeal
⁡
O
=
LIdeal
⁡
O
9
eqid
⊢
2Ideal
⁡
R
=
2Ideal
⁡
R
10
7
1
8
9
2idlval
⊢
2Ideal
⁡
R
=
LIdeal
⁡
R
∩
LIdeal
⁡
O
11
eqid
⊢
opp
r
⁡
O
=
opp
r
⁡
O
12
eqid
⊢
LIdeal
⁡
opp
r
⁡
O
=
LIdeal
⁡
opp
r
⁡
O
13
eqid
⊢
2Ideal
⁡
O
=
2Ideal
⁡
O
14
8
11
12
13
2idlval
⊢
2Ideal
⁡
O
=
LIdeal
⁡
O
∩
LIdeal
⁡
opp
r
⁡
O
15
6
10
14
3eqtr4g
⊢
φ
→
2Ideal
⁡
R
=
2Ideal
⁡
O