Metamath Proof Explorer


Theorem opprb

Description: Equality for unordered pairs corresponds to equality of unordered pairs with the same elements. (Contributed by AV, 9-Jul-2023)

Ref Expression
Assertion opprb AVBWCXDYAB=CDAB=CDAB=DC

Proof

Step Hyp Ref Expression
1 preq12bg AVBWCXDYAB=CDA=CB=DA=DB=C
2 opthg AVBWAB=CDA=CB=D
3 2 adantr AVBWCXDYAB=CDA=CB=D
4 opthg AVBWAB=DCA=DB=C
5 4 adantr AVBWCXDYAB=DCA=DB=C
6 3 5 orbi12d AVBWCXDYAB=CDAB=DCA=CB=DA=DB=C
7 1 6 bitr4d AVBWCXDYAB=CDAB=CDAB=DC