Metamath Proof Explorer


Theorem opprdomn

Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1 O = opp r R
Assertion opprdomn R Domn O Domn

Proof

Step Hyp Ref Expression
1 opprdomn.1 O = opp r R
2 domnnzr R Domn R NzRing
3 1 opprnzr R NzRing O NzRing
4 2 3 syl R Domn O NzRing
5 eqid Base R = Base R
6 eqid R = R
7 eqid 0 R = 0 R
8 5 6 7 domneq0 R Domn y Base R x Base R y R x = 0 R y = 0 R x = 0 R
9 8 3com23 R Domn x Base R y Base R y R x = 0 R y = 0 R x = 0 R
10 eqid O = O
11 5 6 1 10 opprmul x O y = y R x
12 11 eqeq1i x O y = 0 R y R x = 0 R
13 orcom x = 0 R y = 0 R y = 0 R x = 0 R
14 9 12 13 3bitr4g R Domn x Base R y Base R x O y = 0 R x = 0 R y = 0 R
15 14 biimpd R Domn x Base R y Base R x O y = 0 R x = 0 R y = 0 R
16 15 3expb R Domn x Base R y Base R x O y = 0 R x = 0 R y = 0 R
17 16 ralrimivva R Domn x Base R y Base R x O y = 0 R x = 0 R y = 0 R
18 1 5 opprbas Base R = Base O
19 1 7 oppr0 0 R = 0 O
20 18 10 19 isdomn O Domn O NzRing x Base R y Base R x O y = 0 R x = 0 R y = 0 R
21 4 17 20 sylanbrc R Domn O Domn