Metamath Proof Explorer


Theorem opprdomn

Description: The opposite of a domain is also a domain. (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1 O = opp r R
Assertion opprdomn R Domn O Domn

Proof

Step Hyp Ref Expression
1 opprdomn.1 O = opp r R
2 1 opprdomnb R Domn O Domn
3 2 biimpi R Domn O Domn