Metamath Proof Explorer


Theorem opprdomnb

Description: A class is a domain if and only if its opposite is a domain, biconditional form of opprdomn . (Contributed by SN, 15-Jun-2015)

Ref Expression
Hypothesis opprdomn.1 O = opp r R
Assertion opprdomnb R Domn O Domn

Proof

Step Hyp Ref Expression
1 opprdomn.1 O = opp r R
2 1 opprnzrb R NzRing O NzRing
3 eqid Base R = Base R
4 1 3 opprbas Base R = Base O
5 eqid R = R
6 eqid O = O
7 3 5 1 6 opprmul y O x = x R y
8 7 eqcomi x R y = y O x
9 eqid 0 R = 0 R
10 1 9 oppr0 0 R = 0 O
11 8 10 eqeq12i x R y = 0 R y O x = 0 O
12 10 eqeq2i x = 0 R x = 0 O
13 10 eqeq2i y = 0 R y = 0 O
14 12 13 orbi12i x = 0 R y = 0 R x = 0 O y = 0 O
15 orcom x = 0 O y = 0 O y = 0 O x = 0 O
16 14 15 bitri x = 0 R y = 0 R y = 0 O x = 0 O
17 11 16 imbi12i x R y = 0 R x = 0 R y = 0 R y O x = 0 O y = 0 O x = 0 O
18 4 17 raleqbii y Base R x R y = 0 R x = 0 R y = 0 R y Base O y O x = 0 O y = 0 O x = 0 O
19 4 18 raleqbii x Base R y Base R x R y = 0 R x = 0 R y = 0 R x Base O y Base O y O x = 0 O y = 0 O x = 0 O
20 ralcom x Base O y Base O y O x = 0 O y = 0 O x = 0 O y Base O x Base O y O x = 0 O y = 0 O x = 0 O
21 19 20 bitri x Base R y Base R x R y = 0 R x = 0 R y = 0 R y Base O x Base O y O x = 0 O y = 0 O x = 0 O
22 2 21 anbi12i R NzRing x Base R y Base R x R y = 0 R x = 0 R y = 0 R O NzRing y Base O x Base O y O x = 0 O y = 0 O x = 0 O
23 3 5 9 isdomn R Domn R NzRing x Base R y Base R x R y = 0 R x = 0 R y = 0 R
24 eqid Base O = Base O
25 eqid 0 O = 0 O
26 24 6 25 isdomn O Domn O NzRing y Base O x Base O y O x = 0 O y = 0 O x = 0 O
27 22 23 26 3bitr4i R Domn O Domn