Metamath Proof Explorer


Theorem oppreqg

Description: Group coset equivalence relation for the opposite ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses oppreqg.o O = opp r R
oppreqg.b B = Base R
Assertion oppreqg R V I B R ~ QG I = O ~ QG I

Proof

Step Hyp Ref Expression
1 oppreqg.o O = opp r R
2 oppreqg.b B = Base R
3 eqid inv g R = inv g R
4 eqid + R = + R
5 eqid R ~ QG I = R ~ QG I
6 2 3 4 5 eqgfval R V I B R ~ QG I = x y | x y B inv g R x + R y I
7 1 fvexi O V
8 1 2 opprbas B = Base O
9 1 3 opprneg inv g R = inv g O
10 1 4 oppradd + R = + O
11 eqid O ~ QG I = O ~ QG I
12 8 9 10 11 eqgfval O V I B O ~ QG I = x y | x y B inv g R x + R y I
13 7 12 mpan I B O ~ QG I = x y | x y B inv g R x + R y I
14 13 adantl R V I B O ~ QG I = x y | x y B inv g R x + R y I
15 6 14 eqtr4d R V I B R ~ QG I = O ~ QG I