Metamath Proof Explorer


Theorem opprirred

Description: Irreducibility is symmetric, so the irreducible elements of the opposite ring are the same as the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses opprirred.1 S = opp r R
opprirred.2 I = Irred R
Assertion opprirred I = Irred S

Proof

Step Hyp Ref Expression
1 opprirred.1 S = opp r R
2 opprirred.2 I = Irred R
3 ralcom z Base R Unit R y Base R Unit R z R y x y Base R Unit R z Base R Unit R z R y x
4 eqid Base R = Base R
5 eqid R = R
6 eqid S = S
7 4 5 1 6 opprmul y S z = z R y
8 7 neeq1i y S z x z R y x
9 8 2ralbii y Base R Unit R z Base R Unit R y S z x y Base R Unit R z Base R Unit R z R y x
10 3 9 bitr4i z Base R Unit R y Base R Unit R z R y x y Base R Unit R z Base R Unit R y S z x
11 10 anbi2i x Base R Unit R z Base R Unit R y Base R Unit R z R y x x Base R Unit R y Base R Unit R z Base R Unit R y S z x
12 eqid Unit R = Unit R
13 eqid Base R Unit R = Base R Unit R
14 4 12 2 13 5 isirred x I x Base R Unit R z Base R Unit R y Base R Unit R z R y x
15 1 4 opprbas Base R = Base S
16 12 1 opprunit Unit R = Unit S
17 eqid Irred S = Irred S
18 15 16 17 13 6 isirred x Irred S x Base R Unit R y Base R Unit R z Base R Unit R y S z x
19 11 14 18 3bitr4i x I x Irred S
20 19 eqriv I = Irred S