Database
BASIC ALGEBRAIC STRUCTURES
Rings
Opposite ring
opprlem
Next ⟩
opprbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
opprlem
Description:
Lemma for
opprbas
and
oppradd
.
(Contributed by
Mario Carneiro
, 1-Dec-2014)
Ref
Expression
Hypotheses
opprbas.1
⊢
O
=
opp
r
⁡
R
opprlem.2
⊢
E
=
Slot
N
opprlem.3
⊢
N
∈
ℕ
opprlem.4
⊢
N
<
3
Assertion
opprlem
⊢
E
⁡
R
=
E
⁡
O
Proof
Step
Hyp
Ref
Expression
1
opprbas.1
⊢
O
=
opp
r
⁡
R
2
opprlem.2
⊢
E
=
Slot
N
3
opprlem.3
⊢
N
∈
ℕ
4
opprlem.4
⊢
N
<
3
5
2
3
ndxid
⊢
E
=
Slot
E
⁡
ndx
6
3
nnrei
⊢
N
∈
ℝ
7
6
4
ltneii
⊢
N
≠
3
8
2
3
ndxarg
⊢
E
⁡
ndx
=
N
9
mulrndx
⊢
⋅
ndx
=
3
10
8
9
neeq12i
⊢
E
⁡
ndx
≠
⋅
ndx
↔
N
≠
3
11
7
10
mpbir
⊢
E
⁡
ndx
≠
⋅
ndx
12
5
11
setsnid
⊢
E
⁡
R
=
E
⁡
R
sSet
⋅
ndx
tpos
⋅
R
13
eqid
⊢
Base
R
=
Base
R
14
eqid
⊢
⋅
R
=
⋅
R
15
13
14
1
opprval
⊢
O
=
R
sSet
⋅
ndx
tpos
⋅
R
16
15
fveq2i
⊢
E
⁡
O
=
E
⁡
R
sSet
⋅
ndx
tpos
⋅
R
17
12
16
eqtr4i
⊢
E
⁡
R
=
E
⁡
O