Metamath Proof Explorer


Theorem opprlidlabs

Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses oppreqg.o O = opp r R
oppr2idl.2 φ R Ring
Assertion opprlidlabs φ LIdeal R = LIdeal opp r O

Proof

Step Hyp Ref Expression
1 oppreqg.o O = opp r R
2 oppr2idl.2 φ R Ring
3 eqid Base O = Base O
4 eqid O = O
5 eqid opp r O = opp r O
6 eqid opp r O = opp r O
7 3 4 5 6 opprmul x opp r O a = a O x
8 eqid Base R = Base R
9 eqid R = R
10 8 9 1 4 opprmul a O x = x R a
11 7 10 eqtr2i x R a = x opp r O a
12 11 a1i φ x Base R a i b i x R a = x opp r O a
13 12 oveq1d φ x Base R a i b i x R a + R b = x opp r O a + R b
14 13 eleq1d φ x Base R a i b i x R a + R b i x opp r O a + R b i
15 14 ralbidva φ x Base R a i b i x R a + R b i b i x opp r O a + R b i
16 15 anasss φ x Base R a i b i x R a + R b i b i x opp r O a + R b i
17 16 2ralbidva φ x Base R a i b i x R a + R b i x Base R a i b i x opp r O a + R b i
18 17 3anbi3d φ i Base R i x Base R a i b i x R a + R b i i Base R i x Base R a i b i x opp r O a + R b i
19 eqid LIdeal R = LIdeal R
20 eqid + R = + R
21 19 8 20 9 islidl i LIdeal R i Base R i x Base R a i b i x R a + R b i
22 eqid LIdeal opp r O = LIdeal opp r O
23 1 8 opprbas Base R = Base O
24 5 23 opprbas Base R = Base opp r O
25 1 20 oppradd + R = + O
26 5 25 oppradd + R = + opp r O
27 22 24 26 6 islidl i LIdeal opp r O i Base R i x Base R a i b i x opp r O a + R b i
28 18 21 27 3bitr4g φ i LIdeal R i LIdeal opp r O
29 28 eqrdv φ LIdeal R = LIdeal opp r O