Metamath Proof Explorer


Theorem opprmul

Description: Value of the multiplication operation of an opposite ring. Hypotheses eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015)

Ref Expression
Hypotheses opprval.1 B = Base R
opprval.2 · ˙ = R
opprval.3 O = opp r R
opprmulfval.4 ˙ = O
Assertion opprmul X ˙ Y = Y · ˙ X

Proof

Step Hyp Ref Expression
1 opprval.1 B = Base R
2 opprval.2 · ˙ = R
3 opprval.3 O = opp r R
4 opprmulfval.4 ˙ = O
5 1 2 3 4 opprmulfval ˙ = tpos · ˙
6 5 oveqi X ˙ Y = X tpos · ˙ Y
7 ovtpos X tpos · ˙ Y = Y · ˙ X
8 6 7 eqtri X ˙ Y = Y · ˙ X