Metamath Proof Explorer


Theorem opprmulfval

Description: Value of the multiplication operation of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses opprval.1 B = Base R
opprval.2 · ˙ = R
opprval.3 O = opp r R
opprmulfval.4 ˙ = O
Assertion opprmulfval ˙ = tpos · ˙

Proof

Step Hyp Ref Expression
1 opprval.1 B = Base R
2 opprval.2 · ˙ = R
3 opprval.3 O = opp r R
4 opprmulfval.4 ˙ = O
5 1 2 3 opprval O = R sSet ndx tpos · ˙
6 5 fveq2i O = R sSet ndx tpos · ˙
7 2 fvexi · ˙ V
8 7 tposex tpos · ˙ V
9 mulrid 𝑟 = Slot ndx
10 9 setsid R V tpos · ˙ V tpos · ˙ = R sSet ndx tpos · ˙
11 8 10 mpan2 R V tpos · ˙ = R sSet ndx tpos · ˙
12 6 11 eqtr4id R V O = tpos · ˙
13 tpos0 tpos =
14 9 str0 =
15 13 14 eqtr2i = tpos
16 fvprc ¬ R V opp r R =
17 3 16 eqtrid ¬ R V O =
18 17 fveq2d ¬ R V O =
19 fvprc ¬ R V R =
20 2 19 eqtrid ¬ R V · ˙ =
21 20 tposeqd ¬ R V tpos · ˙ = tpos
22 15 18 21 3eqtr4a ¬ R V O = tpos · ˙
23 12 22 pm2.61i O = tpos · ˙
24 4 23 eqtri ˙ = tpos · ˙