Metamath Proof Explorer


Theorem opprnsg

Description: Normal subgroups of the opposite ring are the same as the original normal subgroups. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypothesis oppreqg.o O = opp r R
Assertion opprnsg NrmSGrp R = NrmSGrp O

Proof

Step Hyp Ref Expression
1 oppreqg.o O = opp r R
2 1 opprsubg SubGrp R = SubGrp O
3 2 eleq2i g SubGrp R g SubGrp O
4 3 anbi1i g SubGrp R x Base R y Base R x + R y g y + R x g g SubGrp O x Base R y Base R x + R y g y + R x g
5 eqid Base R = Base R
6 eqid + R = + R
7 5 6 isnsg2 g NrmSGrp R g SubGrp R x Base R y Base R x + R y g y + R x g
8 1 5 opprbas Base R = Base O
9 1 6 oppradd + R = + O
10 8 9 isnsg2 g NrmSGrp O g SubGrp O x Base R y Base R x + R y g y + R x g
11 4 7 10 3bitr4i g NrmSGrp R g NrmSGrp O
12 11 eqriv NrmSGrp R = NrmSGrp O