Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|
2 |
|
opprqus.o |
|
3 |
|
opprqus.q |
|
4 |
|
opprqus.i |
|
5 |
4
|
elfvexd |
|
6 |
|
nsgsubg |
|
7 |
1
|
subgss |
|
8 |
4 6 7
|
3syl |
|
9 |
1 2 3 5 8
|
opprqusbas |
|
10 |
9
|
adantr |
|
11 |
4
|
ad2antrr |
|
12 |
|
eqid |
|
13 |
|
simpr |
|
14 |
|
eqid |
|
15 |
14 12
|
opprbas |
|
16 |
15
|
eqcomi |
|
17 |
13 16
|
eleqtrdi |
|
18 |
17
|
adantr |
|
19 |
|
simpr |
|
20 |
19 16
|
eleqtrdi |
|
21 |
20
|
adantlr |
|
22 |
1 2 3 11 12 18 21
|
opprqusplusg |
|
23 |
22
|
eqeq1d |
|
24 |
1 2 3 11 12 21 18
|
opprqusplusg |
|
25 |
24
|
eqeq1d |
|
26 |
23 25
|
anbi12d |
|
27 |
10 26
|
raleqbidva |
|
28 |
27
|
pm5.32da |
|
29 |
9
|
eleq2d |
|
30 |
29
|
anbi1d |
|
31 |
28 30
|
bitrd |
|
32 |
31
|
iotabidv |
|
33 |
|
eqid |
|
34 |
14 33
|
oppradd |
|
35 |
34
|
eqcomi |
|
36 |
|
eqid |
|
37 |
14 36
|
oppr0 |
|
38 |
37
|
eqcomi |
|
39 |
16 35 38
|
grpidval |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
40 41 42
|
grpidval |
|
44 |
32 39 43
|
3eqtr4g |
|