Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|
2 |
|
opprqus.o |
|
3 |
|
opprqus.q |
|
4 |
|
opprqus1r.r |
|
5 |
|
opprqus1r.i |
|
6 |
|
eqid |
|
7 |
|
fvexd |
|
8 |
|
ovexd |
|
9 |
5
|
2idllidld |
|
10 |
|
eqid |
|
11 |
1 10
|
lidlss |
|
12 |
9 11
|
syl |
|
13 |
1 2 3 4 12
|
opprqusbas |
|
14 |
4
|
ad2antrr |
|
15 |
5
|
ad2antrr |
|
16 |
|
eqid |
|
17 |
|
simpr |
|
18 |
|
eqid |
|
19 |
18 16
|
opprbas |
|
20 |
17 19
|
eleqtrrdi |
|
21 |
20
|
adantr |
|
22 |
|
simpr |
|
23 |
22 19
|
eleqtrrdi |
|
24 |
23
|
adantlr |
|
25 |
1 2 3 14 15 16 21 24
|
opprqusmulr |
|
26 |
6 7 8 13 25
|
urpropd |
|