Metamath Proof Explorer


Theorem opprqus1r

Description: The ring unity of the quotient of the opposite ring is the same as the ring unity of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses opprqus.b B = Base R
opprqus.o O = opp r R
opprqus.q Q = R / 𝑠 R ~ QG I
opprqus1r.r φ R Ring
opprqus1r.i φ I 2Ideal R
Assertion opprqus1r φ 1 opp r Q = 1 O / 𝑠 O ~ QG I

Proof

Step Hyp Ref Expression
1 opprqus.b B = Base R
2 opprqus.o O = opp r R
3 opprqus.q Q = R / 𝑠 R ~ QG I
4 opprqus1r.r φ R Ring
5 opprqus1r.i φ I 2Ideal R
6 eqid Base opp r Q = Base opp r Q
7 fvexd φ opp r Q V
8 ovexd φ O / 𝑠 O ~ QG I V
9 5 2idllidld φ I LIdeal R
10 eqid LIdeal R = LIdeal R
11 1 10 lidlss I LIdeal R I B
12 9 11 syl φ I B
13 1 2 3 4 12 opprqusbas φ Base opp r Q = Base O / 𝑠 O ~ QG I
14 4 ad2antrr φ x Base opp r Q y Base opp r Q R Ring
15 5 ad2antrr φ x Base opp r Q y Base opp r Q I 2Ideal R
16 eqid Base Q = Base Q
17 simpr φ x Base opp r Q x Base opp r Q
18 eqid opp r Q = opp r Q
19 18 16 opprbas Base Q = Base opp r Q
20 17 19 eleqtrrdi φ x Base opp r Q x Base Q
21 20 adantr φ x Base opp r Q y Base opp r Q x Base Q
22 simpr φ y Base opp r Q y Base opp r Q
23 22 19 eleqtrrdi φ y Base opp r Q y Base Q
24 23 adantlr φ x Base opp r Q y Base opp r Q y Base Q
25 1 2 3 14 15 16 21 24 opprqusmulr φ x Base opp r Q y Base opp r Q x opp r Q y = x O / 𝑠 O ~ QG I y
26 6 7 8 13 25 urpropd φ 1 opp r Q = 1 O / 𝑠 O ~ QG I