Metamath Proof Explorer


Theorem opprqusbas

Description: The base of the quotient of the opposite ring is the same as the base of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses opprqus.b B = Base R
opprqus.o O = opp r R
opprqus.q Q = R / 𝑠 R ~ QG I
opprqusbas.r φ R V
opprqusbas.i φ I B
Assertion opprqusbas φ Base opp r Q = Base O / 𝑠 O ~ QG I

Proof

Step Hyp Ref Expression
1 opprqus.b B = Base R
2 opprqus.o O = opp r R
3 opprqus.q Q = R / 𝑠 R ~ QG I
4 opprqusbas.r φ R V
5 opprqusbas.i φ I B
6 eqid opp r Q = opp r Q
7 eqid Base Q = Base Q
8 6 7 opprbas Base Q = Base opp r Q
9 2 1 oppreqg R V I B R ~ QG I = O ~ QG I
10 4 5 9 syl2anc φ R ~ QG I = O ~ QG I
11 10 qseq2d φ B / R ~ QG I = B / O ~ QG I
12 3 a1i φ Q = R / 𝑠 R ~ QG I
13 1 a1i φ B = Base R
14 ovexd φ R ~ QG I V
15 12 13 14 4 qusbas φ B / R ~ QG I = Base Q
16 eqidd φ O / 𝑠 O ~ QG I = O / 𝑠 O ~ QG I
17 2 1 opprbas B = Base O
18 17 a1i φ B = Base O
19 ovexd φ O ~ QG I V
20 2 fvexi O V
21 20 a1i φ O V
22 16 18 19 21 qusbas φ B / O ~ QG I = Base O / 𝑠 O ~ QG I
23 11 15 22 3eqtr3d φ Base Q = Base O / 𝑠 O ~ QG I
24 8 23 eqtr3id φ Base opp r Q = Base O / 𝑠 O ~ QG I