Metamath Proof Explorer


Theorem opprqusdrng

Description: The quotient of the opposite ring is a division ring iff the opposite of the quotient ring is. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses opprqus.b B = Base R
opprqus.o O = opp r R
opprqus.q Q = R / 𝑠 R ~ QG I
opprqus1r.r φ R Ring
opprqus1r.i φ I 2Ideal R
Assertion opprqusdrng φ opp r Q DivRing O / 𝑠 O ~ QG I DivRing

Proof

Step Hyp Ref Expression
1 opprqus.b B = Base R
2 opprqus.o O = opp r R
3 opprqus.q Q = R / 𝑠 R ~ QG I
4 opprqus1r.r φ R Ring
5 opprqus1r.i φ I 2Ideal R
6 eqid opp r Q = opp r Q
7 eqid 1 Q = 1 Q
8 6 7 oppr1 1 Q = 1 opp r Q
9 1 2 3 4 5 opprqus1r φ 1 opp r Q = 1 O / 𝑠 O ~ QG I
10 8 9 eqtrid φ 1 Q = 1 O / 𝑠 O ~ QG I
11 eqid 0 Q = 0 Q
12 6 11 oppr0 0 Q = 0 opp r Q
13 5 2idllidld φ I LIdeal R
14 lidlnsg R Ring I LIdeal R I NrmSGrp R
15 4 13 14 syl2anc φ I NrmSGrp R
16 1 2 3 15 opprqus0g φ 0 opp r Q = 0 O / 𝑠 O ~ QG I
17 12 16 eqtrid φ 0 Q = 0 O / 𝑠 O ~ QG I
18 10 17 neeq12d φ 1 Q 0 Q 1 O / 𝑠 O ~ QG I 0 O / 𝑠 O ~ QG I
19 eqid Base Q = Base Q
20 6 19 opprbas Base Q = Base opp r Q
21 eqid LIdeal R = LIdeal R
22 1 21 lidlss I LIdeal R I B
23 13 22 syl φ I B
24 1 2 3 4 23 opprqusbas φ Base opp r Q = Base O / 𝑠 O ~ QG I
25 20 24 eqtrid φ Base Q = Base O / 𝑠 O ~ QG I
26 17 sneqd φ 0 Q = 0 O / 𝑠 O ~ QG I
27 25 26 difeq12d φ Base Q 0 Q = Base O / 𝑠 O ~ QG I 0 O / 𝑠 O ~ QG I
28 25 adantr φ x Base Q 0 Q Base Q = Base O / 𝑠 O ~ QG I
29 4 ad2antrr φ x Base Q 0 Q y Base Q R Ring
30 5 ad2antrr φ x Base Q 0 Q y Base Q I 2Ideal R
31 simplr φ x Base Q 0 Q y Base Q x Base Q 0 Q
32 31 eldifad φ x Base Q 0 Q y Base Q x Base Q
33 simpr φ x Base Q 0 Q y Base Q y Base Q
34 1 2 3 29 30 19 32 33 opprqusmulr φ x Base Q 0 Q y Base Q x opp r Q y = x O / 𝑠 O ~ QG I y
35 10 ad2antrr φ x Base Q 0 Q y Base Q 1 Q = 1 O / 𝑠 O ~ QG I
36 34 35 eqeq12d φ x Base Q 0 Q y Base Q x opp r Q y = 1 Q x O / 𝑠 O ~ QG I y = 1 O / 𝑠 O ~ QG I
37 1 2 3 29 30 19 33 32 opprqusmulr φ x Base Q 0 Q y Base Q y opp r Q x = y O / 𝑠 O ~ QG I x
38 37 35 eqeq12d φ x Base Q 0 Q y Base Q y opp r Q x = 1 Q y O / 𝑠 O ~ QG I x = 1 O / 𝑠 O ~ QG I
39 36 38 anbi12d φ x Base Q 0 Q y Base Q x opp r Q y = 1 Q y opp r Q x = 1 Q x O / 𝑠 O ~ QG I y = 1 O / 𝑠 O ~ QG I y O / 𝑠 O ~ QG I x = 1 O / 𝑠 O ~ QG I
40 28 39 rexeqbidva φ x Base Q 0 Q y Base Q x opp r Q y = 1 Q y opp r Q x = 1 Q y Base O / 𝑠 O ~ QG I x O / 𝑠 O ~ QG I y = 1 O / 𝑠 O ~ QG I y O / 𝑠 O ~ QG I x = 1 O / 𝑠 O ~ QG I
41 27 40 raleqbidva φ x Base Q 0 Q y Base Q x opp r Q y = 1 Q y opp r Q x = 1 Q x Base O / 𝑠 O ~ QG I 0 O / 𝑠 O ~ QG I y Base O / 𝑠 O ~ QG I x O / 𝑠 O ~ QG I y = 1 O / 𝑠 O ~ QG I y O / 𝑠 O ~ QG I x = 1 O / 𝑠 O ~ QG I
42 18 41 anbi12d φ 1 Q 0 Q x Base Q 0 Q y Base Q x opp r Q y = 1 Q y opp r Q x = 1 Q 1 O / 𝑠 O ~ QG I 0 O / 𝑠 O ~ QG I x Base O / 𝑠 O ~ QG I 0 O / 𝑠 O ~ QG I y Base O / 𝑠 O ~ QG I x O / 𝑠 O ~ QG I y = 1 O / 𝑠 O ~ QG I y O / 𝑠 O ~ QG I x = 1 O / 𝑠 O ~ QG I
43 eqid opp r Q = opp r Q
44 eqid Unit Q = Unit Q
45 44 6 opprunit Unit Q = Unit opp r Q
46 eqid 2Ideal R = 2Ideal R
47 3 46 qusring R Ring I 2Ideal R Q Ring
48 4 5 47 syl2anc φ Q Ring
49 6 opprring Q Ring opp r Q Ring
50 48 49 syl φ opp r Q Ring
51 20 12 8 43 45 50 isdrng4 φ opp r Q DivRing 1 Q 0 Q x Base Q 0 Q y Base Q x opp r Q y = 1 Q y opp r Q x = 1 Q
52 eqid Base O / 𝑠 O ~ QG I = Base O / 𝑠 O ~ QG I
53 eqid 0 O / 𝑠 O ~ QG I = 0 O / 𝑠 O ~ QG I
54 eqid 1 O / 𝑠 O ~ QG I = 1 O / 𝑠 O ~ QG I
55 eqid O / 𝑠 O ~ QG I = O / 𝑠 O ~ QG I
56 eqid Unit O / 𝑠 O ~ QG I = Unit O / 𝑠 O ~ QG I
57 2 opprring R Ring O Ring
58 4 57 syl φ O Ring
59 2 4 oppr2idl φ 2Ideal R = 2Ideal O
60 5 59 eleqtrd φ I 2Ideal O
61 eqid O / 𝑠 O ~ QG I = O / 𝑠 O ~ QG I
62 eqid 2Ideal O = 2Ideal O
63 61 62 qusring O Ring I 2Ideal O O / 𝑠 O ~ QG I Ring
64 58 60 63 syl2anc φ O / 𝑠 O ~ QG I Ring
65 52 53 54 55 56 64 isdrng4 φ O / 𝑠 O ~ QG I DivRing 1 O / 𝑠 O ~ QG I 0 O / 𝑠 O ~ QG I x Base O / 𝑠 O ~ QG I 0 O / 𝑠 O ~ QG I y Base O / 𝑠 O ~ QG I x O / 𝑠 O ~ QG I y = 1 O / 𝑠 O ~ QG I y O / 𝑠 O ~ QG I x = 1 O / 𝑠 O ~ QG I
66 42 51 65 3bitr4d φ opp r Q DivRing O / 𝑠 O ~ QG I DivRing