Step |
Hyp |
Ref |
Expression |
1 |
|
opprqus.b |
|
2 |
|
opprqus.o |
|
3 |
|
opprqus.q |
|
4 |
|
opprqus1r.r |
|
5 |
|
opprqus1r.i |
|
6 |
|
opprqusmulr.e |
|
7 |
|
opprqusmulr.x |
|
8 |
|
opprqusmulr.y |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
6 9 10 11
|
opprmul |
|
13 |
|
eqid |
|
14 |
4
|
ad4antr |
|
15 |
5
|
ad4antr |
|
16 |
|
simplr |
|
17 |
|
simp-4r |
|
18 |
3 1 13 9 14 15 16 17
|
qusmul2 |
|
19 |
|
simpr |
|
20 |
|
simpllr |
|
21 |
19 20
|
oveq12d |
|
22 |
|
eqid |
|
23 |
2 1
|
opprbas |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
2
|
opprring |
|
27 |
4 26
|
syl |
|
28 |
27
|
ad4antr |
|
29 |
2 4
|
oppr2idl |
|
30 |
5 29
|
eleqtrd |
|
31 |
30
|
ad4antr |
|
32 |
22 23 24 25 28 31 17 16
|
qusmul2 |
|
33 |
5
|
2idllidld |
|
34 |
|
eqid |
|
35 |
1 34
|
lidlss |
|
36 |
33 35
|
syl |
|
37 |
2 1
|
oppreqg |
|
38 |
4 36 37
|
syl2anc |
|
39 |
38
|
ad4antr |
|
40 |
39
|
eceq2d |
|
41 |
20 40
|
eqtrd |
|
42 |
39
|
eceq2d |
|
43 |
19 42
|
eqtrd |
|
44 |
41 43
|
oveq12d |
|
45 |
1 13 2 24
|
opprmul |
|
46 |
45
|
a1i |
|
47 |
46
|
eceq1d |
|
48 |
39
|
eceq2d |
|
49 |
47 48
|
eqtr3d |
|
50 |
32 44 49
|
3eqtr4d |
|
51 |
18 21 50
|
3eqtr4d |
|
52 |
10 6
|
opprbas |
|
53 |
8 52
|
eleqtrdi |
|
54 |
53
|
ad2antrr |
|
55 |
3
|
a1i |
|
56 |
1
|
a1i |
|
57 |
|
ovexd |
|
58 |
55 56 57 4
|
qusbas |
|
59 |
6 52
|
eqtr3i |
|
60 |
58 59
|
eqtr2di |
|
61 |
60
|
ad2antrr |
|
62 |
54 61
|
eleqtrd |
|
63 |
|
elqsi |
|
64 |
62 63
|
syl |
|
65 |
51 64
|
r19.29a |
|
66 |
7 52
|
eleqtrdi |
|
67 |
66 60
|
eleqtrd |
|
68 |
|
elqsi |
|
69 |
67 68
|
syl |
|
70 |
65 69
|
r19.29a |
|
71 |
12 70
|
eqtrid |
|