Metamath Proof Explorer


Theorem opprqusmulr

Description: The multiplication operation of the quotient of the opposite ring is the same as the multiplication operation of the opposite of the quotient ring. (Contributed by Thierry Arnoux, 9-Mar-2025)

Ref Expression
Hypotheses opprqus.b B = Base R
opprqus.o O = opp r R
opprqus.q Q = R / 𝑠 R ~ QG I
opprqus1r.r φ R Ring
opprqus1r.i φ I 2Ideal R
opprqusmulr.e E = Base Q
opprqusmulr.x φ X E
opprqusmulr.y φ Y E
Assertion opprqusmulr φ X opp r Q Y = X O / 𝑠 O ~ QG I Y

Proof

Step Hyp Ref Expression
1 opprqus.b B = Base R
2 opprqus.o O = opp r R
3 opprqus.q Q = R / 𝑠 R ~ QG I
4 opprqus1r.r φ R Ring
5 opprqus1r.i φ I 2Ideal R
6 opprqusmulr.e E = Base Q
7 opprqusmulr.x φ X E
8 opprqusmulr.y φ Y E
9 eqid Q = Q
10 eqid opp r Q = opp r Q
11 eqid opp r Q = opp r Q
12 6 9 10 11 opprmul X opp r Q Y = Y Q X
13 eqid R = R
14 4 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I R Ring
15 5 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I I 2Ideal R
16 simplr φ p B X = p R ~ QG I q B Y = q R ~ QG I q B
17 simp-4r φ p B X = p R ~ QG I q B Y = q R ~ QG I p B
18 3 1 13 9 14 15 16 17 qusmul2 φ p B X = p R ~ QG I q B Y = q R ~ QG I q R ~ QG I Q p R ~ QG I = q R p R ~ QG I
19 simpr φ p B X = p R ~ QG I q B Y = q R ~ QG I Y = q R ~ QG I
20 simpllr φ p B X = p R ~ QG I q B Y = q R ~ QG I X = p R ~ QG I
21 19 20 oveq12d φ p B X = p R ~ QG I q B Y = q R ~ QG I Y Q X = q R ~ QG I Q p R ~ QG I
22 eqid O / 𝑠 O ~ QG I = O / 𝑠 O ~ QG I
23 2 1 opprbas B = Base O
24 eqid O = O
25 eqid O / 𝑠 O ~ QG I = O / 𝑠 O ~ QG I
26 2 opprring R Ring O Ring
27 4 26 syl φ O Ring
28 27 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I O Ring
29 2 4 oppr2idl φ 2Ideal R = 2Ideal O
30 5 29 eleqtrd φ I 2Ideal O
31 30 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I I 2Ideal O
32 22 23 24 25 28 31 17 16 qusmul2 φ p B X = p R ~ QG I q B Y = q R ~ QG I p O ~ QG I O / 𝑠 O ~ QG I q O ~ QG I = p O q O ~ QG I
33 5 2idllidld φ I LIdeal R
34 eqid LIdeal R = LIdeal R
35 1 34 lidlss I LIdeal R I B
36 33 35 syl φ I B
37 2 1 oppreqg R Ring I B R ~ QG I = O ~ QG I
38 4 36 37 syl2anc φ R ~ QG I = O ~ QG I
39 38 ad4antr φ p B X = p R ~ QG I q B Y = q R ~ QG I R ~ QG I = O ~ QG I
40 39 eceq2d φ p B X = p R ~ QG I q B Y = q R ~ QG I p R ~ QG I = p O ~ QG I
41 20 40 eqtrd φ p B X = p R ~ QG I q B Y = q R ~ QG I X = p O ~ QG I
42 39 eceq2d φ p B X = p R ~ QG I q B Y = q R ~ QG I q R ~ QG I = q O ~ QG I
43 19 42 eqtrd φ p B X = p R ~ QG I q B Y = q R ~ QG I Y = q O ~ QG I
44 41 43 oveq12d φ p B X = p R ~ QG I q B Y = q R ~ QG I X O / 𝑠 O ~ QG I Y = p O ~ QG I O / 𝑠 O ~ QG I q O ~ QG I
45 1 13 2 24 opprmul p O q = q R p
46 45 a1i φ p B X = p R ~ QG I q B Y = q R ~ QG I p O q = q R p
47 46 eceq1d φ p B X = p R ~ QG I q B Y = q R ~ QG I p O q R ~ QG I = q R p R ~ QG I
48 39 eceq2d φ p B X = p R ~ QG I q B Y = q R ~ QG I p O q R ~ QG I = p O q O ~ QG I
49 47 48 eqtr3d φ p B X = p R ~ QG I q B Y = q R ~ QG I q R p R ~ QG I = p O q O ~ QG I
50 32 44 49 3eqtr4d φ p B X = p R ~ QG I q B Y = q R ~ QG I X O / 𝑠 O ~ QG I Y = q R p R ~ QG I
51 18 21 50 3eqtr4d φ p B X = p R ~ QG I q B Y = q R ~ QG I Y Q X = X O / 𝑠 O ~ QG I Y
52 10 6 opprbas E = Base opp r Q
53 8 52 eleqtrdi φ Y Base opp r Q
54 53 ad2antrr φ p B X = p R ~ QG I Y Base opp r Q
55 3 a1i φ Q = R / 𝑠 R ~ QG I
56 1 a1i φ B = Base R
57 ovexd φ R ~ QG I V
58 55 56 57 4 qusbas φ B / R ~ QG I = Base Q
59 6 52 eqtr3i Base Q = Base opp r Q
60 58 59 eqtr2di φ Base opp r Q = B / R ~ QG I
61 60 ad2antrr φ p B X = p R ~ QG I Base opp r Q = B / R ~ QG I
62 54 61 eleqtrd φ p B X = p R ~ QG I Y B / R ~ QG I
63 elqsi Y B / R ~ QG I q B Y = q R ~ QG I
64 62 63 syl φ p B X = p R ~ QG I q B Y = q R ~ QG I
65 51 64 r19.29a φ p B X = p R ~ QG I Y Q X = X O / 𝑠 O ~ QG I Y
66 7 52 eleqtrdi φ X Base opp r Q
67 66 60 eleqtrd φ X B / R ~ QG I
68 elqsi X B / R ~ QG I p B X = p R ~ QG I
69 67 68 syl φ p B X = p R ~ QG I
70 65 69 r19.29a φ Y Q X = X O / 𝑠 O ~ QG I Y
71 12 70 eqtrid φ X opp r Q Y = X O / 𝑠 O ~ QG I Y